
The Icon Analyst / 1

April 1991
Number 5

In-Depth Coverage of the Icon Programming Language

In this model of string transformation, the string being
produced starts out empty and is built up by appending the
appropriate substrings of the string being scanned, skipping
characters is the cset c. The names instring and outstring are
used to emphasize the relationship between the string being
scanned and the result being produced. In practice, other
names may be more appropriate.

This procedure can be improved by skipping over
consecutive characters in c:

procedure remove(instring,c)
 local outstring

 outstring := ""
 instring ? {
 while outstring ||:= tab(upto(c)) do
 tab(many(c))
 outstring ||:= tab(0) # don't forget the rest
 }
 return outstring
end

In early versions of Icon, returning from inside a scan-
ning expression did not restore the scanning environment
outside it — and hence could play havoc with a scanning
expression unrelated to the procedure. Consequently, return-
ing from inside a scanning expression was a bad programming
practice. Starting with Version 7 of Icon, this problem was
fixed, so that a return from inside a scanning expression does
not cause trouble elsewhere. Many Icon programmers still
follow the old rule, but it’s worth noting that such procedures
can be written more compactly by returning at the point where
the return is natural:

procedure remove(instring,c)
 local outstring

 instring ? {
 outstring := ""
 while outstring ||:= tab(upto(c)) do
 tab(many(c))
 return outstring || tab(0)
 }
end

We’ve put the initialization of outstring inside the scanning
expression to emphasize that it is part of the transformation
process. That’s just cosmetic; its scope is the same either way.

 In this issue …

String Scanning Examples … 1

Pattern Matching … 6

Gedanken Debugging … 10

Programming Tips … 11

What’s Coming Up … 12

String Scanning Examples

Examples seem to be particularly helpful to persons
who are learning to use string scanning. This article presents
several such examples. Some of the examples are compara-
tively simple; if you are an experienced Icon programmer, you
may wish to skip the examples that you know you can handle.
Some suggested exercises are provided in case you’d like to
test your string-scanning proficiency.

Simple Transformations

 Many string-processing tasks can be cast as string
transformations in which an input string is scanned while an
output string is built up — the iterative string scanning
paradigm mentioned in Issue 4 of the Analyst. Such string
transformations often are best cast as procedures that can be
used in a variety of situations.

Removing all instances of specified characters in a
string provides a simple example:

procedure remove(instring,c)
 local outstring

 outstring := ""
 instring ? {
 while outstring ||:= tab(upto(c)) do
 move(1)
 outstring ||:= tab(0) # don't forget the rest
 }
 return outstring
end

2 / The Icon Analyst

Compressing runs of characters in a cset provides
another example of the transformation paradigm:

procedure compress(instring,c)
 local outstring, c1

 instring ? {
 outstring := ""
 while outstring ||:= tab(upto(c)) do {
 outstring ||:= (c1 := move(1))
 tab(many(c1))
 }
 return outstring ||:= tab(0)
 }
end

Exercise: Write a procedure to delete all occurrences of one
string that occur in another.

These procedures take a “positive” view of scanning —
they look for the specified characters. Here’s a “negative”
approach, taken from a program submitted to the Icon pro-
gram library with only the variable names changed to corre-
sponds to those used in previous examples here:

procedure compress(instring,c)
 local outstring, c1

 instring ? {
 outstring := ""
 while outstring ||:= tab(many(~c)) do {
 outstring ||:= (c1 := move(1))
 tab(many(c1))
 }
 return outstring || tab(0)
 }
end

This procedure is incorrect in several respects. In the
first place, instring may start with a character that is in c. In
this case, the loop fails immediately, and the procedure
produces the string unchanged. If the string does not contain
any characters in c, move(1) fails, c1 has the null value, and
there’s a run-time error. Finally, if the string ends in several
different characters that are in c, only the first one is com-
pressed. It may seem unlikely that mistakes as obvious as
these would go unnoticed, but there are some situations in
which they might not be detected for some time. For example,
if the procedure is used to compress runs of blanks between
words, it may work well for much typical data — lines of
natural-language text usually do not begin or end with blanks
or lack blanks altogether.

When we decided to show this example, we thought
we’d fix it up so that it could be compared to the “positive”
approach. That’s not so easy to do — you might want to try
it.

In any event, this kind of programming technique
seems awkward to us, and we’ve seen enough other examples

of incorrect scanning expressions using the “negative” ap-
proach that we advocate the “positive” one.

It’s also worth noting that a cset construction operation
like complementation should not be used in a loop, since Icon
builds a new cset each time, which is expensive in both time
and storage throughput. If you really want to use the “nega-
tive” approach, build the complemented cset once, before
starting scanning.

Columnar Data

The data in a spreadsheet is organized in rows and
columns. Each row is a “record” and each column is a “field”
of a record. Most applications that deal with such data store it
in a proprietary format that suits their needs. Nearly all such
applications, however, can “export” such data as pure text and
similarly “import” pure text, provided it is formatted properly.
In one common text format, each record is a line consisting of
fields separated by tabs.

Suppose you want to reformat such tab-separated data
so that it can be printed with the fields aligned in columns. For
sake of example, suppose the columns are 10 characters wide
with the data left-aligned.

We’ll start with a scanning expression that transforms
tab-separated data in an identifier instring into fixed-width
fields in an identifier outstring:

instring ? {
 outstring := ""
 while field := tab(upto('\t') | 0) do {
 outstring ||:= left(field,10)
 move(1) | break
 }
 }

Since instring contains tab-separated fields, not tab-
terminated fields, there is no tab after the last field. This is
handled by tab(upto('\t') | 0). That is, the cursor is moved up
to the next tab, if there is one, but to the end of the subject if
there isn’t. The move(1) in the do clause moves past the tab,
if there is one. It fails and the loop ends, via break, if there isn’t
a tab.

The auxiliary identifier field can be eliminated by
appending the fixed-width fields directly in the control clause
of the while loop:

instring ? {
 outstring := ""
 while outstring ||:= left(tab(upto('\t') | 0),10) do
 move(1) | break
 }

When you first start writing scanning expressions, it’s
probably a good idea to keep the analysis —tab(upto()) —
separate from the synthesis — outstring ||:= left(). After
things are working, you can go back and make refinements,
such as combining the analysis and synthesis. As a general

The Icon Analyst / 3

rule, taking the trouble to rethink scanning expressions and to
make refinements is worth the effort. It will enable you to
write better scanning expressions in the long run.

The way a string scanning expression is structured
depends to some extent on how it will be used. In the example
above, the desired value is produced as a side effect of string
scanning. You might prefer to have the scanning expression
produce the value. This can be done by making outstring the
last component of the analysis expression:

instring ? {
 outstring := ""
 while outstring ||:= left(tab(upto('\t') | 0),10) do
 move(1) | break
 outstring
 }

In this case, the result of the scanning expression is outstring,
since it’s the last expression in a compound expression. That
is, because of automatic semicolon insertion, the expression
above is the same as:

instring ? {
 outstring := "";
 while outstring ||:= left(tab(upto('\t') | 0),10) do
 move(1) | break;
 outstring;
 }

You might use this formulation as follows:

while instring := read() do
 write(
 instring ? {
 outstring := ""
 while outstring ||:=
 left(tab(upto('\t') | 0),10) do
 move(1) | break
 outstring
 }
)

or even as :

while write(
 read() ? {
 outstring := ""
 while outstring ||:=
 left(tab(upto('\t') | 0),10) do
 move(1) | break
 outstring
 }
)

The trouble with getting the desired result from string
scanning by making an identifier the last component in the
analysis expression is that it may not be easy to see at a glance
what’s going on.

Another common text format for spreadsheet data is

comma-separated, in which each field is enclosed in quotes
(to protect commas that may occur within fields). It’s easy
enough to adapt the scanning expressions above to this input
format.

Exercise: Adapt the scanning expressions above to handle
comma-separated data.

A slightly more interesting problem is the conversion of
tab-separated data into comma-separated data. For simplicity,
we’ll use the first format for scanning as given above, so that
the desired result is produced as a side effect:

instring ? {
 outstring := ""
 while field := tab(upto('\t') | 0) do {
 outstring ||:= image(field) || ","
 move(1) | {
 outstring ?:= tab(–1)
 break
 }
 }
 }

This formulation uses image(), as suggested in Issue 3 of the
Analyst, to provide the quotes around the fields. Note the
use of augmented string scanning to remove the trailing
comma. As before, the analysis and synthesis operations can
be combined:

instring ? {
 outstring := ""
 while outstring ||:= image(tab(upto('\t') | 0)) || "," do
 move(1) | {
 outstring ?:= tab(–1)
 break
 }
 }

The slightly awkward aspect of these formulations is
that while the fields are supposed to be comma-separated, the
synthesized string winds up with an unwanted comma after
the last field. This comma can’t be ignored, since it corre-
sponds to an empty field in comma-separated data. Hence the
truncation of outstring before leaving the while loop.

An alternative formulation is:

instring ? {
 outstring := ""
 while field := tab(upto('\t')) do {
 move(1)
 outstring ||:= image(field) || ","
 }
 outstring ||:= image(tab(0))
 }

We prefer this formulation to the former one, since it’s easier
to understand, but the choice between formulations is mostly
a matter of taste.

4 / The Icon Analyst

We’ve deliberately ignored the possibility that quota-
tion marks might occur within fields. It’s clear what image()
does, but that’s not what most spreadsheet applications do
(they vary somewhat, so a solution to this problems depends
on what a particular application expects).

Exercise: Adapt the scanning expression above to convert
double quotes in fields to single quotes.

One other format conversion is worth considering:
converting fixed-field data to tab-separated data. Where all
fields have the same width, it’s easy. If the fields are, say, 10
characters wide and blank-filled on the right, then here’s
that’s needed:

instring ? {
 outstring := ""
 while field := move(10) do
 outstring ||:= trim(field) || "\t"
 outstring ?:= tab(–1)
 }

Exercise: Combine the analysis and synthesis portions of this
scanning expression and also provide a way to avoid adding
a final tab that has to be removed.

The problem is a little tricker if the data is aligned at the
right so that the padding blanks are at the left. One solution is:

instring ? {
 outstring := ""
 while field := move(10) do
 outstring ||:= reverse(trim(reverse(field))) || "\t"
 outstring ?:= tab(–1)
 }

Another solution is:

instring ? {
 outstring := ""
 while field := move(10) do
 outstring ||:= {
 field ? {
 tab(many(' '))
 tab(0) || "\t"
 }
 }
 outstring ?:= tab(–1)
 }

While this may seem to be a painful way to remove initial
blanks, it’s worth remembering that scanning expressions can
be nested; something like this may be needed for situations in
which there aren’t functions in the built-in repertoire like
reverse() and trim() to do the job.

Sometimes fixed-field data that needs to be converted
to a tab-separated format has fields of different widths. A
common case occurs in address records, where each field has
a different width. For example, such records may have a 40-

character name field, an 80-character address field, and a 10-
character zip-code field. Assuming the data is left-aligned,
converting such records to tab-separated form is a snap:

outstring := {
 instring ? {
 trim(move(40)) || "\t" || trim(move(80)) || "\t" ||
 trim(move(10))
 }
 }

It’s worth noting that this scanning expression fails if the
value of instring is less than 130 characters long.

Exercise: Modify this scanning expression so that it fails if the
value of instring is more that 130 characters long.

Alternatively, you may just want to take the record apart
and assign its fields to specific identifiers:

instring ? {
 name := trim(move(40)) &
 address := trim(move(80)) &
 zipcode := trim(move(10))
 }

The conjunctions deserve note. They bind the three compo-
nents of the analysis expression together, so that if any one
fails, the entire scanning expression fails.

Exercise: Modify this scanning expression so that it fails if the
value of instring is more than 130 characters long.

If you know that the value of instring has the right
length, an alternative formulation is:

instring ? {
 name := trim(move(40))
 address := trim(move(80))
 zipcode := trim(move(10))
 }

Scanning Backwards

Although tab(i) and move(i) can move the cursor to the
left as well as to the right, there’s a strong bias toward left-to-
right scanning. Most data is organized this way, reflecting
both the characteristics of the majority of natural languages
and the way data is stored in computers. There are, however,
times when scanning from right to left is useful.

One right-to-left situation occurs when you’re building
up a string based on the subject, but you want portions from
the right end first.

Consider a procedure rotate(instring,i) that produces
the result of rotating the value of instring left by i characters.
This transformation amounts to dividing instring into two
pieces and concatenating them in reverse order. One method
is:

The Icon Analyst / 5

procedure rotate(instring,i)
 local first

 if instring == "" then return ""
 i %:= ∗instring

 instring ? {
 first := tab(i + 1)
 return tab(0) || first
 }
end

To begin with, i is reduced modulo the length of instring. Then
the first part is obtained by scanning to the right and is
appended to the remainder of the subject. There’s nothing
wrong with this approach, but the auxiliary identifier first can
be avoided by moving to the right end of the string and
scanning to the left:

procedure rotate(instring,i)
 if instring == "" then return ""
 i %:= ∗instring

 instring ? {
 tab(0) # get to right end
 return tab(i + 1) || tab(1)
 }
end

Exercise: Modify these procedures to handle negative values
of i as rotation to the right.

Sometimes more complicated kinds of analyses also are
better done from right to left. Consider inserting commas in an
integer in order to separate groups of three digits to produce
the conventional written form. Thus, for example, "1234567"
is transformed into "1,234,567".

There are lots of ways to perform this transformation,
including mapping (see numbers.icn in Version 8 of the Icon
programming library). To use string scanning, it’s fairly
evident that the comma insertion needs to be done from right
to left. As in many such cases, there’s a choice between
reversing the string and working left to right or taking the
string as-is and working from right to left. We’ll start with
reversal, since it at least transforms the problem into a familiar
domain:

procedure commas(instring)
 local outstring

 outstring := ""
 instring := reverse(instring)
 instring ? {
 while outstring ||:= move(3) || ","
 if pos(0) then outstring ?:= tab(–1)
 else outstring ||:= tab(0)
 }
 return reverse(outstring)
end

The sticky point is that if the length of instring is an even
multiple of three, the last comma needs to be removed.

Exercise: Rewrite this procedure so that a comma is not
appended if the length of instring is an even multiple of three.

This procedure can be restructured to combine some of
the operations:

procedure commas(instring)
 local outstring

 outstring := ""
 return reverse(
 reverse(instring) ? {
 while outstring ||:= move(3) || ","
 if pos(0) then outstring ? tab(–1)
 else outstring || tab(0)
 }
)
end

Scanning reverse(instring) instead of first changing instring
to its reversal is obvious, once you think about it; it’s a
reminder that the subject expression is not limited to being a
string-valued variable. Returning the reversal of the result of
scanning also is obviously what’s needed. The only tricky
thing here is that the result of scanning is outstring: the result
of an if-then-else expression is the result of the expression in
the selected clause. Admittedly, this is a bit obscure, and the
economy obtained may not be worth the loss in program
readability.

But what about just scanning from right to left and
avoiding all this reversal? Here’s a way:

procedure commas(instring)
 local outstring

 outstring := ""
 return instring ? {
 tab(0) #get to right end
 while outstring := "," || move(–3) || outstring
 if pos(1) then outstring ? {
 move(1)
 tab(0)
 }
 else tab(1) || outstring
 }
end

Here’s a case where you might want to use

outstring[2:0]

in place of

outstring ? {
 move(1)
 tab(0)
 }

6 / The Icon Analyst

protocol that specifies what is allowed:

• A matching expression may increase the position (or
leave it where it is).

• When a matching expression sets a new position, it
suspends, producing the substring of the subject between the
previous and new positions.

• If a matching expression is resumed and has no other
position to set, it restores the position to its original value and
fails.

• A matching expression may not change the subject.

The requirement that the position can only be increased
is not really essential to the concept of pattern matching, but
it simplifies some of the discussion that follows. It also is
natural for most string analysis in Icon and fits nicely with
string analysis functions, which always produce positions at
the current position or to its right. Note that tab(i) and move(i)
may violate this requirement. We’ll assume they are not used
that way in the discussion that follows.

There are two fundamentally different aspects to these
rules of protocol: what a matching expression produces (the
matched portion of the subject) and data backtracking (main-
tenance of the position).

The idea behind producing the matched portion of the
subject is that a matching expression, viewed as a pattern,
produces a specific string from among all those that the
pattern can match. Thus, while move(i), as a pattern, charac-
terizes all strings of length i, evaluating move(i) at a particular
position in a particular subject produces a specific string of
length i.

Since matching expressions may advance the position
when they match, they have the nice property that the string
matched by two matching expressions in succession is the
concatenation of the strings they match. For example,

move(i) || move(j)

is a matching expression.

Data backtracking is more subtle. It means that a match-
ing expression is responsible for maintaining the position and,
in particular, leaving it as it was if the matching expression
fails. This assures that alternative patterns are applied at the
same place in the subject, and it corresponds to the intuitive
notion of matching one pattern or another. For example, in

(move(5) || ="#") | tab(0)

if move(5) succeeds but ="#" fails, tab(0) matches starting at
the same place as move(5) did.

In order for a matching expression to restore the posi-
tion, it must suspend so that it can regain control if a subse-
quent matching expression fails. In the example above,
move(5) suspends and is resumed when ="#" fails. The
suspension has nothing to do with producing other matches.
Although some matching expression are generators, move(5)
can match in only one way. It suspends only so that it can
restore the position if a subsequent matching expression fails.
Of course, a matching expression that does not change the

Whether you chose reversal or right-to-left scanning
probably depends on what seems easiest. You might wonder
if there’s a difference in efficiency in the two approaches. Not
much, really. The main difference is that the reversal method
allocates more string storage.

Exercise: Modify the procedures above to handle signed
integers.

Style

Despite all our remarks about good and bad practice in
formulating string scanning expressions, string scanning is
largely a matter of style. Different programmers may write
entirely different kinds of scanning expressions to accomplish
the same results.

You may not like our style. The fact is that we may not
like the style we used last month. We just suggest that you
develop guidelines for writing scanning expressions and try to
use them in a consistent manner.

More to Come

We’ll continue to feature articles on string scanning. In
addition to the one on pattern matching in this issue of the
Analyst, in future issues we’ll explore some issues like the
use of generators in the subject and analysis expressions and
working with structures during string scanning.

Pattern Matching

Note: This article is based on material in the second edition of
The Icon Programming Language. The approach here is
somewhat different and the treatment is more detailed.

Pattern matching, as we use the term, refers to a view of
string scanning in which expressions are thought of in terms
of the strings they can match instead of how they do it. For
example, move(i) can be thought of in two ways: (1) as an
expression that adds i to the current position and returns the
substring between the previous and new positions, or (2) as a
pattern that matches any string that is i characters long. We’ll
concentrate here on the second view.

Although pattern matching is primarily a matter of
viewpoint, it provides a powerful conceptual tool for analyz-
ing strings.

The simplest patterns are what we’ve called matching
expressions. There are two built-in matching expressions,
move(i) and tab(i). More complicated matching expressions
can be built by combining the built-in ones and by writing
matching procedures.

The Matching Protocol

But there’s more underlying this. What is a matching
expression? A matching expression is defined in terms of a

The Icon Analyst / 7

position need not suspend (but it does need to return the empty
string).

Composing Matching Expressions

The ability to build up complicated matching expres-
sions from simpler ones is essential to the use of pattern
matching. The rules of protocol given above determine how
matching expressions can be combined to form other match-
ing expressions. The two basic forms of combination are
concatenation and alternation. If expr1 and expr2 are match-
ing expressions, then

expr1 || expr2

and

expr1 | expr2

are matching expressions. It’s also the case that if expr is a
matching expression,

|expr

is a matching expression, although it’s usually not very
interesting — consider what |move(1) does. And, of course,
=s is a matching expression, since it’s just a shorthand for
tab(match(s)).

Note that, in general,

expr1 & expr2

is not a matching expression, since it produces the string
matched by expr2, not the concatenation of the strings
matched by expr1 and expr2. Conjunction does, however,
handle data backtracking properly. We’ll come back to this
point in a subsequent article, since there are cases in which it’s
useful to know if a pattern matches but it’s not necessary to
know what it matches. This is called recognition instead of
matching and can be done with a simpler protocol than the one
needed for matching.

Most operations on matching expressions do not yield
matching expressions. Some don’t because they do not pro-
duce the correct result, as in

expr1 + expr2

But you’d hardly expect to add two matching expressions.
The more serious limitations arise with control structures.

By definition, control structures alter the flow of con-
trol. Most control structures have control expressions that
determine what expression is evaluated next. Control expres-
sions are bounded, so that if they produce a result, they cannot
be resumed. Bounded expressions are fatal to matching be-
cause they prevent the backtracking that is required to main-
tain the position. For example, if expr1 and expr2 are match-
ing expressions,

if expr1 then expr2

is not, in general, a matching expression, because expr1 is
bounded and cannot be resumed to restore the position if a
subsequent matching expression fails.

In general, a matching expression cannot appear in a
bounded expression and maintain the required protocol. That
covers a lot of ground. For example, in

{expr1; expr2}

expr1 is bounded. Similarly, in

expr \ i

expr cannot be resumed if it produces i results. The exclusion
of bounded expressions applies only to matching expressions.
For example, if expr1 and expr2 are matching expressions,
then so is

if pos(i) then expr1 else expr2

since the expressions in the then and else clauses are not
bounded and pos(i) does not change the position (or contrib-
ute the result produced by the if-then-else expression).

Despite possibilities like this, matching expressions
usually are composed by the concatenation and alternation of
other matching expressions. These two operations correspond
to “match this then match that” and “match this or match that”,
respectively.

Although the built-in repertoire of matching expres-
sions is meager, the analysis functions that provide arguments
for them allow the construction of fairly complex patterns. For
example,

tab(find(":=" | "<–") + 2) ||
 (tab(many(' ')) | move(0)) ||
 tab(many(&letters))

is a pattern that matches any string that contains the substring
":=" or "<–" followed by a string of letters with possible
intervening blanks. The pattern matching flavor of this ex-
pression is exemplified by

tab(many(' ')) | move(0)

to match an optional string of blanks. This also could be
written as

move(0) | tab(many(' '))

The result is the same; the choice depends on whether blanks
are likely. Similarly, "" could be used in place of move(0) to
match an empty string.

Matching Procedures

In spite of what can be done in pattern matching with the
built-in repertoire, you’ll immediately think of reasonable
patterns that require more capabilities. An example is a
pattern that matches two simpler patterns in succession, but

8 / The Icon Analyst

with a “gap” of intervening characters. (Well, you can write
this with the built-in repertoire, but not in a reasonable way.)

The obvious approach to extending the built-in reper-
toire of matching expressions is to write matching procedures
— procedures that obey the matching protocol.

Let’s start by seeing how you could write move(i) and
tab(i) as procedures if they weren’t in the built-in repertoire.
Figuring out what these procedures need to return is easy and
we’ve emphasized suspension and restoration of the position
sufficiently so that those aspects of the protocol should follow
naturally. Here’s a start for tab(i):

procedure tab(i)
 local saved_position

 saved_position := &pos
 suspend .&subject[.&pos : &pos := i]
 &pos := saved_position
 fail

end

The local identifier saved_position is used to save the
position. The argument of the suspend expression is the
matched substring of the subject. There are two points to be
noted here, one subtler than the other. The variable &pos in
the first argument of the subscripting expression is
dereferenced so that the assignment to &pos in the second
argument does not change the first argument before it’s used.
That’s just a matter of remembering that Icon does not
dereference variables until all arguments for an operation are
evaluated. The reason for dereferencing &subject is less
obvious. When a procedure produces a result that is a variable,
the variable is not dereferenced unless it’s local to the proce-
dure. &subject[…] is a variable that is not local to the
procedure, so it is not automatically dereferenced. If the
dereferencing were not forced as it is above, it would be
possible to assign to the result of tab(i) and consequently
change the value of &subject. That may sound intriguing, but
it’s not the way the built-in version of tab(i) works. Of course,
if you forget to dereference the result produced by the proce-
dure, you might go a long time without noticing this problem.

Back to more important things. Note that in the proce-
dure above, if i is out of range, assignment to &pos fails, the
argument of suspend fails, and the procedure does not
produce a result. Assigning the value of saved_position to
&pos changes nothing, since both have the same value in this
case.

If i is in range, however, the position is changed and
tab(i) suspends with the matched substring. If tab(i) is re-
sumed, its remaining task is to restore the position and then
fail. The fail expression is unnecessary, since flowing off the
end of the procedure body accomplishes the same thing.

The procedure above can be written more concisely
using Icon’s reversible assignment operation to take care of

data backtracking:

procedure tab(i)
 suspend .&subject[.&pos : &pos <– i]
end

Reversible assignment suspends so that it can perform data
backtracking case a subsequent expression fails. Next the
proecdure call tab(i) suspends. If tab(i) is resumed, the
suspended reversible assignment operation is resumed. It
restores the position and then fails. (Note the similarity of
reversible assignment and tab(i).) With this formulation,
there is no need for a local identifier to keep track of the
position and restore it. Finally, using the common Icon
practice, failure is provided implicitly by flowing off the end
of the procedure.

This procedure is an instance of a more general model
for matching procedures:

procedure …
 suspend .&subject[.&pos : &pos <– new position]
end

where new position indicates an expression that produces one
or more new positions for the position. An example of the use
of this model is:

procedure gap()
 suspend .&subject[.&pos : &pos <–
 &pos to ∗&subject + 1]
end

This procedure matches strings of length 0, 1, … through the
end of the subject.

As mentioned earlier, a pattern abstractly characterizes
a set of strings without any particular order among them. A
procedure like gap() may match several different strings, but,
of course, there’s an order in how it goes about this. The

The Icon Analyst / 9

procedure above is “pessimistic” and tries the shortest pos-
sible string first, matching longer strings only if it’s forced to
do so by resumption resulting from the failure of subsequent
matching expressions. An optimistic version of this matching
procedure is:

procedure gap()
 suspend .&subject[.&pos : &pos <–
 ∗&subject + 1 to &pos by –1]
end

So far we’ve not used one of the potentially most
powerful aspects of matching procedures — that they are
first-class values.

To see why this might be useful, consider some match-
ing procedure, p(). Suppose you encounter a situation in
which you want to either match p() or the empty string. If you
just need to do it once, you can use

p() | ""

What if you find you need this construction in a lot of
places? You could make a modified version of p(). But
suppose you also find that you want to use several different
procedures this way.

The solution is to encapsulate the concept — match
something or the empty string — in another procedure, say
orempty(p). The idea is that orempty(p) applies p in the
desired context:

procedure orempty(p)
 suspend (p() | "")
end

The parentheses around the argument to suspend are not
necessary. Since this type of construction is used frequently,
its worth remembering that such a procedure can be written as:

procedure orempty(p)
 suspend p() | ""
end

You may want to convince yourself that orempty()
really does what we claim. Follow through the evaluation.
The call p() is evaluated first. If it fails, the empty string is
evaluated next, orempty() suspends with the empty string,
and what happens next is pretty clear. Granted, it isn’t neces-
sary for orempty() to suspend in this case, but it’s much easier

(and less error-prone) just to plug the matching expression, as-
is, in as the argument of suspend. If p() produces a result,
orempty() suspends with that result — it does just what p()
alone would have done. If orempty() is resumed, p() is
resumed, since it suspended (being a matching expression).
That’s all there is to it; everything else follows from what you
already know.

Being able to pass matching procedures as arguments to
other matching procedures opens up all kinds of possibilities.
But if you look closely — or if you try some examples of your
own, you’ll find one problem: Suppose a matching procedure
you want to pass to another matching procedure has argu-
ments of its own.

If you know there will be an argument, you can provide
for it, as in:

procedure orempty(p,x)
 suspend p(x) | ""
end

But suppose the procedure has a lot of arguments. You
could provide for as many as you’ll know you need. Perhaps
it’s eight:

procedure orempty(p,x1,x2,x3,x4,x5,x6,x7,x8)
 suspend p(x1,x2,x3,x4,x5,x6,x7,x8) | ""
end

If p() doesn’t need eight arguments, the extra ones really don’t
matter. But there’s always the possibility that later you may
need more than eight arguments. More to the point, this kind
of construction is just plain ugly.

You can use Icon’s variable-argument form of proce-
dure declaration, coupled with list invocation, to get a general
formulation:

procedure orempty(p,x[])
 suspend p!x | ""
end

The first argument to orempty() is the matching procedure.
Any remaining arguments when orempty() is called are
passed in a list, which is the value of x. The expression p!x
calls p() with the arguments from the list x — just what’s
needed.

We’ll end this article by expanding on an example from
the second edition of The Icon Programming Language that
shows the power of recursion.

Sometimes a particular construction in a string — a
pattern — occurs several times in a row; perhaps zero or more.
Suppose p() matches this pattern. What we want is a matching
procedure arbno(p) that matches what p() matches, zero or
more times in a row. Roughly speaking, what’s needed is

"" | p() | (p() || p()) | (p() || p() || p()) | …

Of course, there must be some context that causes the alterna-

Back Issues

Back issues of The Icon Analyst are available
for $5 each. This price includes shipping in the
United States, Canada, and Mexico. Add $2 per
copy for airmail postage to other countries.

10 / The Icon Analyst

tives to be evaluated.

Such an open-ended construction suggests a closed
form, using recursion:

procedure arbno(p)
 suspend "" | (p() || arbno(p))
end

If you’re accustomed to using recursion as a programming
tool — and it’s a powerful one indeed — you’ll quickly see
what’s going on. Roughly stated, arbno(p) first matches the
empty string (zero occurrences of p()). If it’s resumed, it
matches p() followed by arbno(p) — which matches the
empty string first, so this amounts to one match of p(). And
so on. If this informal argument is not clear, try writing out the
result sequence for arbno(p). You might also experiment
with an example and use procedure tracing to see what’s
actually happening.

We’ve again deliberately ignored the case where p()
has arguments. We can use the same idea we used for
orempty(), but the formulation is a little more difficult, since
both p() and arbno(p) have to be called. The way to do it is
to pass all the arguments to arbno() is a single list:

procedure arbno(x[])
 suspend "" | (x[1]!x[2:0] || arbno!x)
end

Consider an example:

arbno(move,1)

The argument x is the list [move,1]. Plugging this into the
procedure body gives

suspend "" | (move![1] || arbno![move,1])

move![1] is the same as move(1) and arbno![move,1] is the
same as arbno(move,1).

You may think this formulation is elegant or absurd,
depending on your preference in programming style. We like
it because it provides a general method of implementing a
powerful programming facility.

More to Come

We’ve just scratched the surface of what can be done
with string scanning when it is viewed in terms of pattern
matching.

In an upcoming article, we’ll explore how matching
procedures can be used to model the powerful pattern-match-
ing facilities of SNOBOL4. We’ll also have something to say
about relaxing the pattern-matching protocol so that expres-
sions don’t have to return the matched portion of the subject.
This opens up the kinds of expressions that can be used and
also can be used for string synthesis.

Gedanken Debugging

Gedanken experiments have been used very success-
fully to obtain insights into the workings of our physical
universe. The word “gedanken” means “thought” in German.
Albert Einstein’s gedanken experiments are best known. As
Roger Penrose aptly puts it [1], “In a thought experiment, one
strives to discover general principles from the mere mental
consideration of experiments that one might perform.”

Gedanken debugging is based on a similar idea —
trying to discover the cause and location of an error in a
program by thinking about the program and what might occur
if you tried various things, but without actually doing them.

The Icon Analyst

Madge T. Griswold and Ralph E. Griswold
Editors

The Icon Analyst is published six times a year. A
one-year subscription is $25 in the United States,
Canada, and Mexico and $35 elsewhere. To sub-
scribe, contact

Icon Project
Department of Computer Science
Gould-Simpson Building
The University of Arizona
Tucson, Arizona 85721
U.S.A.

(602) 621-8448

FAX: (602) 621-4246

Electronic mail may be sent to:

icon-project@cs.arizona.edu

or

...{uunet,allegra,noao}!arizona!icon-project

and

© 1991 by Madge T. Griswold and Ralph E. Griswold
All rights reserved.

The Bright Forest Company
 Tucson Arizona

The Icon Analyst / 11

Since there’s no debugger for Icon (at least not yet), you
aren’t tempted as you might be in C to launch a debugger
before even thinking about what’s happened.

In Icon, you can turn on tracing or add expressions to
produce diagnostic output. But you might think about the
problem a little first — try some gedanken debugging. We
contend that’s a good idea even for programming languages
with powerful debuggers.

Of course, gedanken debugging is a lot easier if you
have considerable experience with programming Icon and
tracking down bugs.

Here are a few suggestions that you may find useful in
gedanken debugging:

• If the bug causes error termination, look carefully at the
trace output. Look at all of it.

• Start by believing in the correctness of the diagnostic
information that Icon provides. While Icon itself may have
bugs, it’s been used by many programmers for a long time and
most known problems have been fixed. A very high percent-
age of program malfunctions are due to programming mis-
takes, not to problems with Icon itself.

• If the problem is at a known location, look at the code
there carefully; don’t just brush it off because it looks right at
first glance. Give special consideration to possible syntactic
pitfalls as listed in Issue 2 of the Analyst.

• If traceback information shows a null value where one
should not be, look for a misspelled identifier or an uninitialized
variable. And look for more than one null value while you’re
at it.

• Look at the nature of the symptoms and review pro-
gramming pitfalls that may produce such problems.

• If the bug is one that’s just cropped up in a formerly
working program, think carefully about changes you may
have made recently. Don’t dismiss a “trivial” change that
“couldn’t possibly cause a problem”. Think about syntactic
pitfalls in this regard. If that doesn’t do it, retrace your steps
(mentally). Maybe a change made a couple of days ago is just
now causing problems.

• If the bug is particularly stubborn, give gedanken
debugging some time, even overnight. Your subconscious
may ferret out the problem if given the opportunity.

Of course, many problems require a combination of
techniques, such as gedanken debugging in combination with
tracing and selective diagnostic output. The point is, think
about the problem; don’t just rely on mechanical devices.

Reference

1. Roger Penrose, The Emperor’s New Mind, Oxford Univer-
sity Press, 1989. p. 360.

There may not be many occasions when you need to
take advantage of the fact that Icon functions and procedures
are “first-class” values that can be assigned to variables,
passed to and from procedures, and so forth. It’s actually more
likely that you’ll get into trouble because of this feature. For
example,

tab := 8

wipes out the initial value of tab, which is (was) an important
function.

Functions and procedures are no different in this regard,
so we’ll just use the term procedure for both here.

There are some neat, if somewhat obscure, things you
can do with procedures as first-class values. For example,

if \output then Write := write else Write := 1

assigns the function for writing to Write, provided output is
non-null, but assigns the value 1 to Write otherwise. (Write
and write are different identifiers, of course — case is signifi-
cant in Icon identifiers.)

If it’s not clear what this might be good for, consider a
program in which you want to be able to turn off all output
selectively, perhaps under control of a command-line option.
Here you can use Write for all output; if its value is the
function for writing, output occurs as usual, but if its value is
1, the result is the first argument instead. Except in unusual
circumstances, this is a “no-op”.

Programming
Tips

12 / The Icon Analyst

If you’re brave (or foolhardy), you could do this instead:

if /output then write := 1

That way, you don’t have to use Write in your program
and an existing program can be easily adapted. Of course, if
you do need to write something, you’ve lost the function
(unless you saved it somewhere first).

In fact, the programs in Icon’s benchmark suite do
something much like this (being careful to take care of writes
also). When doing benchmarks, output is suppressed so that it
doesn’t skew the timings, but to be sure the program is
working correctly, the output can be enabled without having
to modify the programs.

Things like this work well for procedures, but what
about operators like + ? Operators don’t have names — that
is, unlike functions, an operator is not the initial value of a
global identifier. In fact, an operator is not a first-class value
at all. Or is it? Is Icon hiding something?

Actually operators are values just like procedures, but
without associated global identifiers. But is there a way to get
at these values?

There’s a modestly obscure function in Icon, proc(p),
that can be used to determine if p is a procedure (which
includes functions, of course). This function succeeds if p is
a procedure but fails otherwise. If it succeeds, it returns the
procedure. For example,

proc(system)

succeeds if system() is a supported function. The argument
to proc() also can be the string name of a procedure, so you can
do things like

if p := proc(read()) then p()

The interesting thing is that proc() works for operators
too. Operators are given by their string names (like "+") and
a second argument is used to indicate the number of argu-
ments. (Some symbols, such as + , are used for both unary
(prefix) and binary (infix) operators.) For example,

sum := proc("+",2)

assigns the infix addition operator to sum. Subsequently,

sum(i,j)

produces the sum of i and j.

So there really is a way to get at operators as values. It’s
closely associated with string invocation and there are a few
limitations and restrictions (see the second edition of The Icon
Programming Language for details).

You still may not see any good reason for all this. The
uses are esoteric. But keep the capability in mind. Maybe it
will be just what you need someday.

Downloading Icon Material

Most implementations of Icon are available for
downloading electronically:

BBS: (602) 621-2283

FTP: cs.arizona.edu (cd /icon)

What’s Coming Up

Next time we’ll approach string scanning from a differ-
ent viewpoint — seeing how it really works by writing Icon
procedures that model it.

We’ll turn our attention to programming with structures
with the first of a series of articles on how to program with
structures. This first article will cover the role of pointers in
Icon.

While everyone knows how to get an Icon program to
stop running, there are some fine points that you may not have
thought about. We’ll have an article on program termination to
address this issue.

And we’ll have an article called “Evaluation Sand-
wiches”. We’ll leave the contents of that article to your
imagination, but don’t plan on a gastronomic delight.

Subscription Renewal

The next issue of the Analyst will complete the first
year of publication.

Most present subscriptions are for one year. We’ll
include a renewal form in the next issue for those subscrip-
tions that are expiring. You also can renew now to be sure of
uninterrupted delivery.

See the box on page 10 of this issue for information.

