
The Icon Analyst / 1

February 1991
Number 4

In-Depth Coverage of the Icon Programming Language

 In this issue …

Programs that Write Programs … 1
Writing Scanning Expressions … 2
Large Integers … 5
Memory Utilization … 7
From the Wizards … 10
Programming Tips … 11
Thanks and Credits … 11
Feedback … 12
What’s Coming Up … 12

Programs that Write Programs

There’s something fascinating about a program that
produces another program, even if the result is simple. It
seems like an act of creation, even if it isn’t. Programs that
write programs in the creative sense are rare; such cases
usually are so complicated that the act of creation, if any, is
lost in complexity. There’s an argument that creativity is
nothing more than the right kind of complexity, but our
concerns are more mundane.

Even in the absence of a creative act, there are metalin-
guistic issues with programs that write programs, and these
produce syntactic problems. Such problems arise whenever
it’s necessary to talk about language; you have to distinguish
the language you’re using for description from the language
you’re describing. If both languages are the same, it can get
confusing and complicated.

Icon has only one mechanism for distinguishing strings
from program text: surrounding quotation marks. The use of
"x" to distinguish the string x from the identifier x is so natural
and easy that you probably never make a mistake in writing
the two, except maybe for failing to provide the closing
quotation mark for a long string.

When a program writes a program, however, things get
sticky. It’s easy enough to write out a program line such as

write("write(&time)")

— you're writing the string

write(&time)

However, if the argument of the (inner) write() is a literal
string such as "end", you can’t just use

write(" write("end")")

The Icon compiler thinks" write(" is a string, and when it
then encounters end, it reports a syntax error, since it’s
syntactically incorrect to have a literal immediately followed
by an identifier.

Icon provides several ways around such problems. The
most straightforward way is to use its escape mechanism, in
which the character immediately following a backslash is
interpreted in a special way. If a quotation mark immediately
follows a backslash, the two characters are interpreted as a
literal quotation mark instead of the quotation mark serving as
the end of the literal. Consequently, the expression above can
be written as

write(" write(\"end\")")

and the string written out is

write("end")

The trouble with this technique is that quotes and
escaped quotes get confusing. While it’s easy for a computer
program, such as Icon’s compiler, to keep them straight, the
human mind isn’t built that way. There are a few things you
can do to make it easier to handle the “meta-quote” problem.
One approach is to assign a string consisting of a double quote
to an identifier and then use the identifier wherever a quote is
needed:

quote := "\""
write(" write(",quote,"end",quote,")")

There are two problems with this approach. One is that a
single string has been replaced by five strings. There’s no
significant loss of efficiency in this case, since write() just
writes its string-valued arguments, one after another. If,
however, the situation is changed slightly so that the string has
to be retained in the program, actual concatenation is needed:

line := " write(" || quote || "end" || quote || ")"

Such constructions are awkward to write and hard to read
(although they probably are not as bad as escaped quotes).

It’s really a matter of taste as to how you chose to
represent literal quotes. If you’re good at handling nested

2 / The Icon Analyst

syntax (and don’t expect persons who aren’t good at it to read
your programs), the escaped quote sequence is the shortest
and most direct.

There’s another device that’s helpful on occasion: the
function image(). If its argument is a string, its value is that
string with surrounding quotes and any internal quotes given
with escape sequences. Thus, the example above can be
written as

write(" write(",image("end"),")")

This device takes a little getting used to, but once you
see what’s going on, you’ll realize there are situations (not the
one above) where it’s very useful indeed.

There’s a short program in the Icon program library,
iwriter.icn that uses just this technique:

procedure main()
 while write("write(",image(read()),")")
end

To see why you might want iwriter.icn, consider what’s
involved in empg.icn (“Benchmarking Icon Expressions”,

The Icon Analyst, Issues 1 and 2). This program has to
write fairly complicated Icon code. Think about knowing the
kind of code you want to write and working backward to a
program that writes it.

Now consider a little puzzle — writing a self-replicat-
ing Icon program that, when executed, writes out a copy of
itself. Better yet, write the shortest possible such program.

The shortest known self-replicating Icon program to
date was written by Ken Walker and appears in the box below.
Can you do better? Or prove the one shown below is the
shortest possible?

calls system() with the balance of the line as the argument. A
low-level approach to the handling of these “special” lines is:

while line := read() do {
 if line[1] == "!" then system(line[2:0])
 else …
 }

A string-scanning approach to the same problem is:

while line := read() do {
 line ? {
 if ="!" then system(tab(0))
 else …
 }
 }

Which approach is better? While there’s no clear-cut
answer to this question, it’s generally better to use string
scanning, even in simple cases like this one. String scanning
is almost certainly better for even moderately complicated
string analysis, and simple code tends to get more complex as
a program evolves. Using string scanning for all analysis
produces a consistent style.

Most programmers who use low-level string analysis
say they do so because it’s faster, although some will admit
that they are not comfortable with string scanning.

The assumption that low-level analysis is faster than
string scanning is an example of how easy it is to make the
wrong conclusion about the performance of Icon. The fact is
that string scanning is almost always faster than low-level
analysis. Even in the simplest expressions, string scanning
typically is 50% faster than the equivalent low-level analysis.
Why? In the first place, there’s very little overhead in getting
into string scanning. And, once you’re there, the operations

are cast at a higher level with less
overhead and fewer elementary
computations are needed. This is one
case where “low-level” doesn’t
translate into “efficient”.

It’s natural for low-level
string-analysis operations to be eas-

ier to use when you are first learning Icon, since these
operations are similar to operations in other programming
languages that you may already know. Such “inertia” is a
major factor in many programmers’ choice of style and
approach.

Once you get used to string scanning, and especially if
you use it consistently in favor of lower-level operations,
you’ll find your investment will pay off handsomely.

Of course, like any such advice, the recommendation to
use string scanning needs to be applied intelligently. It makes
sense if the low-level operations and string scanning are
performing the analysis in the same way. But it’s not a good
idea, for example, to try to use string scanning to see if a string
is palindromic (that is, if it reads the same forward and
backward); the function reverse() is a much better choice.

procedure main();x:="procedure main();x:= \nx[21]:=image(x);write(x);end"
x[21]:=image(x);write(x);end

Shortest Known Self-Reproducing Icon Program

Writing Scanning Expressions

This is the second in a series of articles on using string
scanning in Icon. This article deals with some pragmatic
matters.

When to Use String Scanning

Since Icon has low-level string-analysis operations in
addition to string scanning, you may have trouble deciding
when to use low-level operations and when to use string
scanning.

Consider an example. Suppose a program reads lines
from a file. Most of the lines are data, perhaps to be formatted,
but if a line begins with an exclamation point, the program

The Icon Analyst / 3

Perhaps a better way to phrase the recommendation is to use
string scanning if the problem can be naturally cast that way.
And, of course, low-level operations have their place. You’d
not want to use string scanning in place of expressions like

return s[1:–1]

and

s[i] := ""

Formulating Scanning Expressions

Assuming we’ve talked you into at least trying string
scanning, you may wonder where to start. One of the prob-
lems with string scanning is that analysis expressions often
are fairly complex. This is to be expected, since one of the
conceptual bases for string scanning assumes that string
analysis consists of a succession of operations. String analy-
sis expressions often are “little programs”, but since they also
are just Icon expressions, there’s a tendency to write the
subject, a question mark, and then just plunge into the analysis
expression. Before long, however, the analysis expression is
likely to become awkward and poorly structured.

It’s usually worth spending a little time thinking about
an analysis expression before starting to code. One device
that’s helpful in enforcing this discipline is to encapsulate the
analysis expression in a procedure. For example, a scanning
expression to write out all the words in a string can be written
as

sentence ? while tab(upto(&letters)) do
 write(tab(many(&letters)))

But it might be better to write it as

sentence ? writewords()

with the procedure

procedure writewords()
 while tab(upto(&letters)) do
 write(tab(many(&letters)))
end

Note that the call of writewords() does not affect the scanning
environment; the subject and position are the same inside the
procedure call as outside.

The encapsulation of analysis expressions in proce-
dures is helpful in organizing programs. Encapsulation also is
helpful if the procedures need to be modified; think about a
more sophisticated definition of words in the example above.
If an analysis expression is encapsulated in a procedure, it also
can be used in different scanning expressions without having
to duplicate it or modify multiple copies.

Procedural encapsulation, however, requires extra
work and discipline, and most programmers are not willing to
use it consistently as a programming technique. A simpler
device, one that at least encourages you to stop and think, is
to always open a scanning expression with a brace, even if you
think it’s not going to be necessary. The use of braces also
makes the scope of the analysis expression easier to see, as in

sentence ? {
 while tab(upto(&letters)) do
 write(tab(many(&letters)))
 }

In addition to improving program readability, it prevents
mistakes like

sentence ? tab(upto('.')) & pos(–1)

where pos(–1) is intended to check that the period is at the end

of the subject. As noted in Issue 2 of the Analyst, this
expression groups as

(sentence ? tab(upto('.'))) & pos(–1)

so the pos(–1) applies to the outer scanning environment. It
usually doesn’t take many such experiences to convince an
Icon programmer to always use braces:

sentence ? {
 tab(upto('.')) & pos(–1)
 }

Style Considerations

Poorly structured analysis expressions are a common
cause of problems in using string scanning, especially for
novice Icon programmers. Here are a few suggestions for
avoiding such difficulties:

• Avoid low-level operations in analysis expressions;
stay on one level of thinking. An example of bad style is:

sentence ? {
 while tab(many(&letters)) do {
 word := tab(many(&letters))
 if word[1] == "X" then write(word)
 }

A better formulation is:

4 / The Icon Analyst

sions given above to write the words in a sentence are typical
of this paradigm.

In pattern matching, expressions are used in conjunc-
tion to assure the mutual success with backtracking to find
alternatives. A problem that is typical of the pattern matching
paradigm is identifying outer parentheses in a parenthesis-
balanced expression:

expression ? {
 ="(" & tab(bal()) & =")" & pos(0)
 }

The analysis expression succeeds if the subject consists of a
left parenthesis followed by a parenthesis-balanced string,
followed by a right parenthesis that is at the end. It’s worth
noting that the analysis expression may involve data back-
tracking. Suppose, for example, the value of expression is
"((a+b)+(c+d))". The expression tab(bal()) first matches
"(a+b)", but since this is not followed by a right parenthesis,
tab(bal)) is resumed to produce "(a+b)+" and then
"(a+b)+(c+d)".

As a point of style, conjunctions like this are easier to
read if the components are written on separate lines:

expression ? {
 ="(" &
 tab(bal()) &
 =")" &
 pos(0)
 }

 Contrast this scanning expression with the following
one:

expression ? {
 if ="(" then {
 if tab(bal()) then {
 if =")" then pos(0)
 }
 }
 }

This expression may look like it will work, but it won’t, since
tab(bal()) is used in a bounded expression where it can’t be
resumed to produce another value (see the example men-
tioned earlier). We’ll have more to say about this later in an
article on pattern matching.

In summary, iterative scanning stresses the process of
scanning and is appropriate where portions of the subject can
be processed in sequence and then “discarded”. Pattern

sentence ? {
 while tab(many(&letters)) do {
 word := tab(many(&letters))
 if word ? ="X" then write(word)
 }

Note that there’s nothing wrong with nesting scanning expres-
sions; the whole reason for maintaining scanning environ-

ments, as described in Issue 3 of the Analyst, is to make sure
expressions such as this work the way you’d expect.

• Don’t refer to &subject and &pos in analysis ex-
pressions unless it’s really necessary. For example, use tab(i),
not &pos := i, to set the position. The whole idea behind string
scanning is to avoid explicit references to the subject and
position. Incidentally, tab(i) is faster than &pos := i. Another
example of bad style in string scanning is:

line ? {
 if ="!" then write(&subject[2:0])
 }

It’s better to use

line ? {
 if ="!" then write(tab(0))
 }

• If the subject expression is a variable, don’t use that
variable inside the analysis expression. It’s not unusual to see
poorly conceived scanning expressions such as this:

line ? {
 if ="!" then write(line[2:0])
 }

Again, tab(0) is better.

• As mentioned above, always enclose analysis ex-
pressions in braces.

• Write complicated analysis expressions on several
lines as necessary to make them readable.

• Encapsulate complicated analysis expressions in
procedures.

Scanning Paradigms

There are no syntactic restrictions whatsoever on what
kinds of computations can be put in an analysis expression.
This can be very useful; you can write data from inside a
scanning expression, perform arithmetic, and so forth. On the
other hand, this freedom tends to get Icon programmers in
trouble. A little discipline goes a long way here.

One road to discipline in writing scanning expressions
is to think of them in terms of models that have some structure.
There are two useful paradigms for structuring analysis ex-
pressions: iterative scanning and pattern matching.

In iterative scanning, the position moves along the
subject, generally from left to right, and portions of the subject
are processed as they are encountered. The scanning expres-

Back Issues

Back issues of The Icon Analyst are available
for $5 each. This price includes shipping in the
United States, Canada, and Mexico. Add $2 per
copy for airmail postage to other countries.

The Icon Analyst / 5

matching stresses the relationships among components of the
subject and is appropriate where the desired analysis needs to
be phrased in terms of the overall structure of the subject.

Iterative scanning is, in some sense, lower level than
pattern matching. It tends to be imperative — “do this then
that”. Pattern matching allows a higher level of abstraction
and tends to be declarative — “this kind of string followed by
that kind of string”. Pattern matching is a very powerful tool
and is particularly useful in the analysis of complex string
structures.

Iterative string scanning and pattern matching are in
some sense extremes. Many analysis expressions combine
aspects of both. The two approaches are, nonetheless, funda-
mentally different and it’s worth giving some thought to the
nature of a complicated string-analysis problem before
plunging in. These paradigms can provide guidance on the
best approach to take.

Large Integers

Version 8 introduced large integers to Icon — integers
not restricted in magnitude by the limitations of ordinary
computer architecture. Prior to that, Icon integers were lim-
ited by two’s-complement 32-bit arithmetic and hence to the
range –231 to 231 – 1 (–2,147,483,648 to 2,147,483,647). (A
few implementations of Icon use 64-bit arithmetic with a
correspondingly larger range.)

Large integers seem natural to Icon. After all, Icon
allows arbitrarily long strings, limited only by the amount of
memory available. Why should integers be limited to a fixed
range?

There are reasons for limiting integers to what a com-
puter can handle directly. One is speed. Another is the
difficulty of doing what’s called “arbitrary-precision arith-
metic” in software. We prefer the term “large-integer arith-
metic” and use it here.

Implementing large-integer arithmetic really is diffi-
cult, especially if it’s done well, completely, and efficiently.
There are some tough policy decisions and lots of little things
to worry about. These problems are not new, however, and
several programming languages, notably dialects of Lisp,
have supported large-integer arithmetic for a long time.

Icon presents some special problems in implementation
because of its automatic type conversion and dynamic mem-
ory management. Fortunately, the code for large-integer
arithmetic in Icon was donated by a person who was familiar
with the facility in a Lisp system. It didn’t come totally free —
a lot of work was needed to retrofit it to Version 8 of Icon and
to make it work with computers with 16-bit processors. Even
now there are a few rough edges, but it’s basically a high-
quality and robust implementation.

But what are large integers good for? 32-bit integers are
enough for counting and representing the sizes of most
objects. There are, of course, a host of number-theoretic
problems that deal with very large integers. As of this writing,
for example, the largest known prime is 391,581 × 2216,193 – 1
and has 65,087 digits in its decimal representation. That’s a
big number, but not especially large by number-theoretic
standards. Clearly, if you are interested in problems in number
theory, you can’t live with 32-bit integer arithmetic.

It’s worth noting that if you don’t use large integers,
their presence in Icon will not bother you or affect the
performance of your Icon programs. Integers that can be
handled directly by computer hardware are represented and
manipulated as before. Large integers only come into exis-
tence if the result of an arithmetic computation won’t fit in the
range of “native” integers.

Large-integer arithmetic seems to be an emotional
issue. Some programmers couldn’t care less about it, while
others light up and run off to compute 1,000! just for the fun
of it. We’ll suppose for the moment that you have enough
interest in large integers to read on.

Speed and Space

Large-integer arithmetic is not without its problems.
They are the usual ones in computing: speed and space. You
can’t expect the division of two large integers to be fast. If you
don’t already know the time complexity of various arithmetic
operations, you may want to review the reference at the end of
this article before undertaking a significant project involving
large integers. A number with a lot of decimal digits also
requires a lot of memory. There also are a few kinky aspects
to the implementation that you need to know about if you’re
going to use large integers.

In most cases, the time required to perform an operation
that produces a really large integer pales in significance
compared to the time it takes to convert the large integer to a
string so that you can see it or print it out. For example,
computing the largest prime mentioned earlier takes only
about two minutes on a Sun Sparcstation, but it takes more
than two hours to convert the result to a string. The problem
is not one of poor implementation; it’s fundamental. The best
known algorithm for converting the internal representation of
an integer to a string (which is an instance of radix conversion)
is quadratic (n2) in the size of the integer. For example, 10 1000

takes on the order of 100 times longer to convert to a string
than 10100. Not only does it take a long time to convert a really
large integer to a string; there’s a psychological problem —
you’ll probably wonder if the conversion really is taking all
that long or if your program (or Icon) is in a loop.

The quadratic nature of integer-to-string conversion
poses implementation problems too. If your program writes
large integers, that’s presumably what you intended. If, how-
ever, you turn on procedure tracing to see what’s going on and

6 / The Icon Analyst

an argument or returned value is a large integer, are you
prepared to wait minutes or even hours for every trace mes-
sage to perform the conversion? Presumably not. For this
reason, the string image of an integer with more than about 25
digits shows only the approximate number of digits in the
corresponding string, not the actual string itself. For example,
image(10 ^ 100) produces "integer(~99)". The number of
digits is only approximate; figuring out the exact number of
digits amounts to doing the whole conversion.

Space problems come in two forms. One problem is the
amount of memory needed to store large integers. Large
integers are stored as blocks of “digits”, where a digit usually
is a 16-bit (native) integer. There is some overhead, but you
can count on less than two bytes per decimal digit for really
large integers. The string space for the decimal representation
of a large integer cannot be ignored; it’s just one byte per digit.
These figures should tell you one thing — you’re not going to
be able to compute or print the largest known prime on an MS-
DOS implementation of Icon, where the string and block
regions are limited to 65,000 bytes.

There’s a more general pragmatic consideration. It
takes a lot of code to support large-integer arithmetic. It
typically increases the size of Icon’s run-time system by about
15%. Icon’s run-time system already is large, and memory
problems are severe for many personal-computer users. This
increase may render Icon useless even to persons who have no
need for large integers. Consequently, large-integer arithme-
tic is not supported for all personal-computer implementa-
tions of Icon. (For MS-DOS, two run-time systems are in-
cluded in the distribution, one with large-integer arithmetic
and one without it.)

Programming Considerations

Internally, there are two representations of integers:
machine integers that are handled in the mode that is native for
the computer and large integers that are stored as blocks of
digits as mentioned earlier. The difference in representation is
largely invisible; both have type integer, and there’s no
source-language test to find out what the actual representation
is. A large integer only comes into existence if machine-
integer arithmetic would overflow. (Icon did overflow check-
ing before large integers were added, so this is nothing new.)
Conversely, arithmetic on large integers that produces a result
in the range of machine integers produces a machine integer.

Despite the “transparency” of large integers, there a few
things you should know about the implementation of large-
integer arithmetic if you intend to use it.

While large integers are supported in most operations,
there are a few holes. Large-integer arithmetic is not sup-
ported for i to j by k or in seq(). In addition, large integers
cannot be assigned to keywords, such as &trace, that require
integer values. It’s even possible there is some obscure

numerical nook that we overlooked that should support large
integers but doesn’t.

There’s one implementation “hack” you should know
about if you need large-integer literals in your programs. Such
literals are not converted to blocks of digits by Icon’s compiler
or linker. Instead, they are passed through to the run-time
system as strings but flagged to be converted automatically to
large integers when they are evaluated. The conversion pro-
cess is transparent, but it takes time and allocates space. Avoid
using large-integer literals in loops where conversion may
take place repeatedly.

There’s also a conceptual problem with treating a large
integer as a bit string and shifting the bits using ishift(i,j). In
two’s complement arithmetic, the most-significant bit is one
for negative numbers. Consequently, if you shift a negative
integer right one bit and fill the vacated position by zero, the
integer becomes positive. Conversely, if you shift a positive
integer to the left far enough, it becomes negative. But what
about large integers, which don’t have this machine represen-
tation? There seems to be no consistent way to treat bit shifting
of large integers that satisfies everyone’s expectations. In
Version 8 of Icon, shifting the bits of a negative integer right
results in a positive integer, but shifting the bits left does not
result in a negative integer — once an integer is positive, it
stays that way under the operation of bit shifting.

Finally, there one known bug in large-integer arithme-
tic: Overflow during exponentiation of machine integers may
not be detected and may result in erroneous integer values.

The Bottom Line

Don’t let these problems scare you off. We’ve listed
them so you’ll know they are there, but they only affect
operations that rarely occur in practice.

If you’re interested in trying large integers but don’t
happen to have an unsolved number-theoretic problem handy,
try this one: Take any positive integer, reverse its digits (that
is, reverse the string representation of the integer), and add the
result to the integer. If the result is palindromic (that is, if it
reads the same from left to right as it does from right to left),
stop. Otherwise continue the process with the new integer.

You’ll find this process terminates quickly for most
integers. For example, 169 → 1130 →1441. But for some
integers, such as 196, the process does not appear to terminate.
In fact, whether or not this process terminates for all integers
is an unsolved problem.

Reference

Knuth, Donald E. The Art of Computer Programming, Vol. 2,
Seminumerical Algorithms, Addison-Wesley, Reading, MA.,
1969, pp. 229-290.

The Icon Analyst / 7

• the icode file for our program

• Icon’s allocated data regions

• I/O buffers and other space needed by the operating
system

On personal computers, the operating system and
memory-resident programs may take up a significant portion
of the available memory. This subject is beyond the scope of
this article, but the first thing you should do if you’re program-
ming on a computer with a small amount of memory is to find
out how much space is available for executing programs.
There are various utilities for getting this information. You
may be surprised how little memory really is available and
you may discover you have memory-resident programs that
you didn’t know you had and that you don’t need.

The Icon executor contains the code that’s needed to run
an Icon program. You can get an idea of how much memory
it requires by looking at its file size. The executor is called
iconx, possibly with some suffix like .exe. The amount of
memory needed is not necessarily the same as the file size (the
file may be compressed or may carry excess baggage), but it’s
a good first approximation.

An icode file results from compiling and linking your
Icon source program. The icode file is loaded into memory
when the Icon executor starts up. The size of an icode file
depends on a lot of things, but it’s largely a function of the size
of your Icon source program and typically is 3 to 4 times the
size of the corresponding source code with white space
(notably comments) removed. To find out how much memory
is needed for the icode file, just look at its file size (icode file
names are the same as source-code file names, but with the
.icn suffix removed or replaced by .icx). There’s an excep-
tion: on UNIX systems, the icode file has a bootstrap header
that loads iconx automatically. The size of this header, which
varies from system to system, should be deducted from the
icode file size in determining how much memory the icode file
will occupy. We’ll have more to say about what affects the
size of an icode file in the next section.

Icon’s allocated data regions take a lot of memory —
they provide the space for data objects that are created during
program execution. There are several regions. The major ones
are the string region, the block region, and the evaluation
stack. As the name suggests, strings created during program
execution are stored in the string region. All other objects
created during program execution (notably structures) are
stored in the block region. The evaluation stack provides
space for temporary results produced during expression
evaluation.

The string and block regions normally occupy 65K
bytes each and the evaluation stack normally is 40K bytes.
You can make the region sizes larger or smaller by using
environment variables, although the maximum region size
may be limited by computer architecture.

Some implementations of Icon allow region sizes to
grow if more space is needed as a program executes. Most

Memory Utilization

Strings and structures require a lot of memory. Icon is
a big program. Many computers have only comparatively
small amounts of memory. All this adds up to trouble.

If you are using Icon on a workstation, super-mini, or
mainframe where you’re likely to have ready access to several
megabytes of memory, what follows may be of little interest
to you. If you’re running Icon on a personal computer with a
small amount of memory, you’re bound to run into trouble
sooner or later. If the amount of memory you have really is
inadequate for Icon, you may be having trouble running at all.

There is a more frustrating situation: You may invest a
lot of time and effort in developing an application in Icon, only
to discover that when you try to run it on real data, there isn’t
enough memory; your program doesn’t scale up.

This article contains information on how Icon uses
memory and what you can do to minimize its memory
requirements. If you’re worried that a program may not scale
up, there’s information here to enable you to get a handle on
what to expect.

Planning Ahead

Icon often provides several different ways of doing the
same thing, sometimes with different data structures. It’s a
plain and simple fact that your choice of data structures may
make a lot of difference in the amount of memory your
program needs — and hence, in some situations, whether it
will work or not.

Icon programmers often are advised (usually by per-
sons with lots of memory on their computers) not to worry
about what data structure to use, but to do what seems easiest.
This is good advice in many situations, but taking it at face
value can lead to frustration and unnecessary work.

If you’re working in an environment with a limited
amount of memory (less that two megabytes, say) and you
need to keep a lot of data in memory while your program runs,
you are better advised to do some planning.

Unfortunately, determining how much memory a pro-
gram needs often is complicated, and accurate calculations
may be impractical. Nonetheless, knowing how memory is
used and how big Icon’s data objects are can help you select
reasonable strategies for memory-intensive programs.

Run-Time Memory Allocation

Most concerns about the utilization of memory relate to
what goes on at run-time, when a program is executed.

Most of run-time memory is needed for the following
purposes:

• the operating system itself

• memory-resident programs like device drivers

• the Icon executor, iconx

8 / The Icon Analyst

program, it must necessarily contain all the information
necessary to run the program. In addition to compiled code, it
contains all constants: literal strings, csets, and real numbers.
(Integer literals are embedded in the compiled code.) An icode
file also contains information about declarations: procedures
and records.

Every string that appears in a program (except for
comments) is stored in a string region of its icode file. This
includes the names of identifiers as well as string literals.
These strings are pooled for the entire program; no matter how
many times the same string appears or how it is used (for
example as an identifier and as a literal), it appears only once
in the icode file’s string region. Strings are packed and null-
terminated, so the amount of space needed for strings in an
icode file is the total number of characters plus one byte for
each different string.

Cset and real literals are pooled, but only on a per-
procedure basis. The space required for such literals on a per-
procedure basis is:

cset literals 40 bytes

real literals 12 bytes

Space also is required for identifiers: global identifiers
(including procedure and record names), static identifiers,
and local identifiers (which include arguments). The space
required in an icode file for each distinct identifier is :

global 16 bytes

static 16 bytes

local 8 bytes

Each procedure requires 72 bytes in addition to the code
it contains (the space for arguments and local identifiers is
included in the figures above).

Each record declaration requires 52 bytes for its record-
construction function. In addition, there is an n × m matrix,
where n is the number of record declarations and m is the
number of distinct field names.

While it’s probably not worthwhile to worry too much
about these details, if icode file size is a problem, you can
reduce it by minimizing the number of global variables and
possibly the number of procedures, although the use of
procedures for organizing a program probably is more impor-
tant than the amount of space they take in a icode file.

Since the size of the matrix for record field names
depends on the product of the number of different records and
distinct field names, if your program has many different
record declarations and a lot of different field names, you
should look to this as a source of excessive icode file size.

Storage Allocation

For most programs, the main consideration in memory
utilization is the amount of space needed for objects that are
allocated during program execution. In particular, if these

personal-computer implementations of Icon, where memory
problems tend to be the most severe, do not allow region sizes
to grow. We’ll assume here that Icon’s allocated regions
cannot grow.

In addition to Icon’s allocated regions, which are estab-
lished when iconx starts up, space may be needed during
program execution for I/O buffers and other operating system
uses (such as the execution of Icon’s system() function). This
space is taken from whatever is left over after iconx, the icode
file, and Icon’s allocated regions are in memory. Except for
implementations that allow Icon’s allocated regions to grow,
space for co-expressions also is taken from whatever is left
over.

Just to get a handle on how all this adds up, consider a
typical MS-DOS system. MS-DOS itself and memory-resi-
dent programs probably take at least 100K bytes (the figure
may well be more). The Icon executor takes about 200K. The
allocated data regions take about 170K. That adds up to 470K
out of the 640K available under MS-DOS — leaving 170K for
everything else. A good-sized icode file may be 30K (there’s
a 65K limit under MS-DOS). That leaves 140K, which is
enough for some co-expressions, I/O buffers, and so forth.
Whether system() will work in what’s left over is problem-
atical. If MS-DOS itself and memory-resident programs take
more than 100K, the amount of free memory is correspond-
ingly squeezed down. It’s no wonder that persons running
MS-DOS have trouble with large Icon programs.

One thing about this MS-DOS scenario that is funda-
mentally important is the 65K limit on region sizes. This limit
is a consequence of the segmented i86 architecture and the
limitations of C compilers. 65K regions are not big enough for
really memory-intensive programs. If you have to operate in
this environment, you’ll have to give a lot more consideration
to what you can do and how you’re going to do it than if you
are running on a workstation with several megabytes of
memory (real or virtual).

The balance of this article is devoted to information that
may be helpful to you if you have a “tight” memory environ-
ment.

The figures given are for typical implementations of
Icon and apply to computers with 16- and 32-bit integers. For
computers with 64-bit integers, most values are twice as large
except for strings, which are the same size on all implemen-
tations.

Icode Files

There is not a great deal you can do about the size of an
icode file, short of keeping your program small or dividing its
functionality among several programs. If, however, the size of
an icode file is a problem (as, for example, in approaching the
65K barrier in MS-DOS), it may be handy to know a few
things about what’s in an icode file and how much space it
takes.

Since an icode file is a binary version of a source

The Icon Analyst / 9

objects are retained in memory over the course of program
execution, instead of being transient and hence collectable,
your program may suffer degraded performance (due to
frequent garbage collections that do not free much space). It
even may not have enough space to run to conclusion.

A complete description of the amount of space required
for objects created during program execution is very compli-
cated and is beyond the scope of this article. See References
1 and 2 for more information. What follows are the highlights;
they should be enough to help you chose the best data
structures to use for your programs and provide the necessary
information for deciding what to do if you have memory
utilization problems.

Strings created during program execution are stored in
the allocated string region. They are packed but not null-
terminated. So count one byte of storage for every character
in every string created by your program. It’s worth noting that
substrings do not require any additional storage. And, of
course, space for strings that are no longer in use is reclaimed
by garbage collection.

The space for csets and real numbers created during
program execution is the same as the amount of space in an
icode file: 40 bytes and 12 bytes, respectively.

Structures created during program execution are the
usual cause of memory utilization problems. To understand
structures, it’s necessary to understand how Icon values are
represented.

Since any variable in Icon can take on any kind of value,
there must be enough space associated with every variable to
hold any kind of value. Some values can be arbitrarily large,
so they cannot be stored in a fixed-size space. Instead, they are
referenced indirectly by pointers. Every Icon value is repre-
sented by a descriptor, which either contains the value itself
or a pointer to it. Descriptors also contain other information,
such as the type of the value. Every descriptor requires 8 bytes
of storage. For example, every identifier requires 8 bytes of
storage for its value. The space required for identifiers is
accounted for by the figures given for icode files in the
preceding section.

Structures also contain values. These come into being
when the structure is created or when elements are added to it.
For example, list(10) creates a list with 10 elements and
consequently contains 10 descriptors (which require 80 bytes
of storage).

The space for descriptors contained in a structures is
one consideration in understanding the memory requirements
of structures. Icon’s structures consist of more than just the
descriptors, however ; the sophisticated access mechanisms
provided for structures require additional space. In addition,
automatic storage management and the information needed
for garbage collection add additional space overhead for
structures. The details are moderately complicated for lists,
sets, and tables, since they can grow and shrink in size and
hence their size at any particular time may depend on the

history of access to them. The figures that follow are first
approximations to the memory requirements for structures.
See References 1 and 2 for additional information.

A list that is fixed in size has 48 bytes of space overhead
in addition to 8 bytes per element. For example, list(1)
allocates 56 bytes, while list(10) allocates 128 bytes.

Empty lists are exceptions. It is presumed that an empty
list is created with the intention of adding values to it by queue
or stack access, and it is created with space for 8 values. That
is, list(0) and list(8) allocate the same amount of space, 112
bytes. The first 8 elements added to an empty list come free.
If more are added, additional space is allocated. The compu-
tation of the exact amount is somewhat complicated, since it
depends on how big the list is — the bigger the list is, the more
space is provided for additional elements, so as to reduce the
overall storage overhead. See Reference 2 for details.

Sets and tables are even more complicated, since space
is used to provide efficient look-up. Both sets and tables have
header blocks and space used to reference elements. An empty
set requires 96 bytes, while an empty table requires 104 bytes
(the difference is a descriptor for the default value for the
table).

Set and table elements require more space than just that
needed for their values. Both have overhead related to effi-
cient look-up, and every table element has a key descriptor as
well as a value descriptor. Every set element requires 20 bytes
and every table element requires 28 bytes. As tables and sets
get large, there is increased space overhead for allowing
efficient access. See Reference 2 for details.

Records are simple. A record with n fields requires 16
+ (8 × n) bytes.

To summarize the approximate storage requirements,
in bytes, for structures with n elements:

lists: 48 + (8 × n) + Θ
sets: 96 + (20 × n) + Θ
tables: 104 + (28 × n) + Θ
records: 16 + (8 × n)

where Θ indicates some additional space overhead that de-
pends in a complicated way on the size of the structure and its
access history. For large structures, however, the amount of
space that depends on n dominates this overhead as well as the
constant term.

Some general ideas about the space requirements of
alternative structures can be seen at a glance. For example, for
a large number of elements, a set requires about 2.5 times as
much space as a list. In many cases, it’s possible to use a list
in place of a set. Of course, if a set is the natural way to deal
with your data, you get a lot in return for the extra space
required: fast tests for membership and a fast way to delete an
element, not to mention the operations of union, intersection,
and difference. Most important, you can think about a collec-
tion of values in set terms.

10 / The Icon Analyst

Another thing to think about is that strings often pro-
vide a very compact representation of data. You often can
encode a lot of information in a string with little space
overhead — perhaps just a few punctuation characters here
and there. For example, a tree can be encoded in a string by
using parentheses to delimit subtrees and commas to separate
nodes at the same level. Accessing the information encoded
in this way is, however, likely to be more difficult and
unnatural than accessing a tree composed of records. We’ll
have more to say about this in an upcoming article on space/
time trade-offs.

Measuring Allocation

If you want more information about the space require-
ments for Icon values, you can read the suggested references
or you can get your own empirical results. The program
empg.icn in the Icon program library is designed to do this.
See “Benchmarking Icon Expressions” in Issue 2 of the

Analyst. To avoid garbage collection from interfering with
the results, use a small value for the number of iterations —
1 will do for finding out how much space a specific structure
takes.

For more complicated situations, use the Icon key-
words that are designed for providing storage information.
The keyword &collections generates garbage collection in-
formation; first the total number of collections to date, and
then the number of collections triggered by allocation in the
static, string, and block regions. The keyword ®ions
generates the sizes of the static, string, and block regions,
respectively, while &storage generates the amount of space
currently in use in the static, block, and string regions. All
values are given in bytes. The static region does not exist in
many implementations of Icon and the figures given for it
generally are not meaningful, so they should be ignored.

References

1. The Implementation of the Icon Programming Language,
Ralph E. Griswold and Madge T. Griswold, Princeton Uni-
versity Press, Princeton, New Jersey, 1986.

2. Supplementary Information for the Implementation of
Version 8 of Icon, Ralph E. Griswold, Icon Project Document
112, Department of Computer Science, The University of
Arizona, 1990.

Downloading Icon Material

Most implementations of Icon are available for
downloading electronically:

BBS: (602) 621-2283

FTP: cs.arizona.edu (cd /icon)
(128.196.128.118 or 192.12.69.1)

From the Wizards

Wizards do wonderful
and magical things. They
also, on occasion, do de-
mented things.

The other day we
were thinking about radix
conversion. Converting an
integer i in base j to base 10
is easy — Icon’s radix liter-
als provide the notation and
conversion of a string rep-
resenting a radix literal to
an integer does the trick:

integer(i || "r" || j)

What about converting an integer i in base j to base k,
where k is not necessarily 10? The usual technique is to first
convert the integer to base 10 and then use a conventional
chug-and-plug loop, concatenating remainders on successive
divisions by 10. See radcon.icn in the Icon program library
for this method.

But we thought there might be a more “Icon-ish” way to
do general radix conversion and posed our problem to a
wizard friend. No doubt influenced by his experiences at a
recent Constraint Convention, he said

That’s easy. It’s just a matter of solving

 (j || "r" || i) = (k || "r" || x)

That is, finding the value of x for which this
comparison succeeds. All we need is a source of
values in base k and we can sit back and wait for the
right one to show up. We’ll use a recursive genera-
tor — after all, this is Icon. Let’s see … Icon
represents digits in radix literals by 0, 1, … 9, a, b,
… z. This ought to do:

procedure k_integer(k)
 static chars

 initial chars := (&digits || &lcase)[2:0]

 suspend 0 | nstar(chars[1:k])
end

procedure nstar(s)
 suspend !s | (nstar(s) || (0 | !s))
end

Sure enough, here’s a general radix conver-
sion procedure:

procedure radcon(i,j,k)
 local x

 (j || "r" || i) = (k || "r" || (x := k_integer(k)))
 return x
end

The Icon Analyst / 11

Note that the three methods produce different results if
expr does not produce n results. In the list and co-expression
methods, the assignment to x fails if there aren’t n results,
leaving its value unchanged. In the limitation method, the
value of x is the last result generated, if any. In the list and co-
expression methods, it’s easy to add a test for failure. In the
limitation method, it’s more awkward; a counter incremented
in a do clause is a possibility. Of course, you may know that
expr produces at least n values.

Here’s an example of where you might want to use the
limitation method. Suppose you want to know how much
storage is in use in the allocated block region. This is the third
result generated by &storage, so

every blocks := &storage \ 3

does the trick.

Similar situations sometimes come up in string scan-
ning. Suppose a string contains a list of words, each followed
by a comma, as in

wordlist := "This,is,a,list,of,words,"

One way to get the nth word is:

wordlist ? {
 i := 0
 every i := upto(',') \ (n – 1)
 tab(i + 1)
 word := tab(upto(','))
 }

We’ll leave it as an exercise to handle the situation in which
commas are used as separators and there is no comma after the
last word.

See also the related programming tip in Issue 2 of the

Analyst.

Generators produce
their results one after an-
other. Sometimes this is
just what you want, but
sometimes it isn’t.

Suppose you want
just the nth result in
a sequence pro-
duced by a genera-
tor. What’s the
best way to do it?

One way is
to put all the re-
sults from the gen-

erator in a list and
then use the nth ele-

ment of the list, as in

L := []
every put(L,expr)
x := L[n]

where expr is the generator. This method may require a lot of
space if expr produces many results — and most of that space
is wasted. Of course, if expr produces an infinite number of
results, this is no method at all.

Another method is to use a co-expression, as in

C := create expr
every 1 to n – 1 do @C
x := @C

This solution works even if expr potentially has an infinite
number of results, but a co-expression takes a lot of space and
it’s not really necessary.

A better method to is to use limitation, as in

every (x := expr) \ n

Here, each result produced by expr is assigned to x, the
generator is stopped after n results, and the value of x at the
point is the desired one.

Programming
Tips

At this point, our wizard went hopping off into the
Arizona sunset, cackling all the way. Wizards tend to do that
around here.

His procedure works, and it’s even reasonably efficient
for converting small values (the bases don’t matter much). But
it does it by starting at zero and counting up in base k with
strings. It takes forever for large integers.

Incidentally, we think the wizard’s procedures for gen-
erating integers in base k can be improved, but after this
experience, we haven’t the stomach for it.

Thanks and Credits

We rely on two expert readers, Gregg Townsend and
Ken Walker, for checking the contents of the Analyst. Their
help is invaluable; not only do they find typographical errors,
but they also catch potential blunders and often suggest
significant improvements.

Any remaining mistakes are, of course, our responsibil-
ity.

We use clip art from various sources to add a little visual
interest to the Analyst. The graphics used in the “Program-
ming Tips” are called mortised cuts and were used in early
nineteenth-century advertising art. The originals were done as
wood engravings and carried advertising messages, which
we’ve replaced.

12 / The Icon Analyst

What’s Coming Up

The focus on string scanning will continue in the next

issue of the Analyst with two articles. One article will
present some examples of scanning expressions and explain
why they are written as they are. The other article will discuss
pattern matching and the principles that underlie it.

And we have an article called “Gedanken Debugging”.

The Icon Analyst

Madge T. Griswold and Ralph E. Griswold
Editors

The Icon Analyst is published six times a year. A
one-year subscription is $25 in the United States,
Canada, and Mexico and $35 elsewhere. To sub-
scribe, contact

Icon Project
Department of Computer Science
Gould-Simpson Building
The University of Arizona
Tucson, Arizona 85721
U.S.A.

(602) 621-8448

FAX: (602) 621-4246

Electronic mail may be sent to:

icon-project@cs.arizona.edu

or

...{uunet,allegra,noao}!arizona!icon-project

and

© 1991 by Madge T. Griswold and Ralph E. Griswold
All rights reserved.

The Bright Forest Company
 Tucson Arizona

The mortised cuts we use are scanned from Handbook
of Early Advertising Art, Clarence P. Hornung, Dover Publi-
cations, 1956. This book is just one of many in Dover’s
copyright-free pictorial archive series. This series is an mar-
velous and inexpensive source of graphics — something to
consider if you need clip art for a publication of yours.

Tell your
friends

about the
Analyst

Feedback

We want to thank subscribers to the Analyst for their
support, encouragement, kind remarks, and constructive sug-
gestions.

We’ve had several requests for articles on specific
subjects. String scanning seems to be a concern to many Icon
programmers, and our current series on the subject is in
response to this interest.

We’ve also been asked to present case studies of pro-
grams. This actually is hard to do. Most interesting programs
are a bit bulky for the space available in a publication of this
size and a detailed description takes a lot of room too. We’ll
give this one a try, however.

One subscriber asked for articles on SNOBOL4. We’re
reluctant to do this. This is a newsletter about Icon. We also
doubt that a significant number of our subscribers are familiar
with SNOBOL4.

If you suggest something that doesn’t appear promptly,
don’t be surprised or discouraged — we try to stay several
issues ahead of the publication schedule so that we don’t have
to scramble at the last minute to get an issue out. For example,
the next three issues of the Analyst already are substantially
complete.

But we are interested in what you’d like to see in the
Analyst and we take all suggestions seriously, even if it
sometimes takes us a while to do something about them.
Please let us know what you think.

