
The Icon Analyst / 1

December 1990
Number 3

In-Depth Coverage of the Icon Programming Language

6. Avoid the use of semicolons to separate expres-
sions. Instead, put the expressions on separate lines.

7. Adopt a “paragraphing” style for laying out nested
expressions and use it religiously. Indent in a consistent
manner. There are many paragraphing styles (the second
edition of the Icon language book illustrates one of these). The
choice is more a matter of taste than correctness. The rule is
consistency.

8. Use braces to clearly delineate the extent of com-
plicated expressions, even when braces are not required
syntactically.

9. Use parentheses to show the intended grouping of
operators and operands in complicated expressions, even if
parentheses are not necessary.

10. Avoid long lines. Instead, continue expressions on
as many lines as are needed for easy readability. See the first

two issues of The Icon Analyst for the proper techniques
for breaking lines. Similarly, continue long string and cset
literals on several lines if that’s necessary to make them
readable. See Appendix A of the second edition of The Icon
Programming Language for the method of continuing quoted
literals.

11. Use literal escape sequences for “special charac-
ters”, even if these characters can be entered directly in a
program. For example, use "\t" instead of just typing a tab. Do
not use the character’s internal code (such as char(9)).

12. Comments are all-important in program readabil-
ity. Don’t procrastinate in providing them, but remember that
you may change your program after you write your com-
ments. Go back over your comments when your program is
“finished”.

13. Favor narrative blocks of comments prior to the
code to which they refer over short, fragmentary comments on
individual lines of code.

 In this issue …

Program Readability … 1
Writing Portable Icon Programs … 2
String Scanning … 5
Generators … 8
Programming Tips … 11
From the Wizards … 12
What’s Coming Up … 12

Program Readability

Everyone has somewhat different personal preferences
for laying out the text of a program. While it’s a little extra
work to make a program attractive and readable, it’s usually
worth it: The ease with which a program can be understood
depends to a considerable extent on how it’s laid out. And
even if you don’t expect someone else to read your programs,
you’ll probably have to look at one of your own programs long
after you wrote it. If you’ve ever had the experience of looking
at one of your old programs and saying to yourself “what in
the world is this all about?”, you know what we mean.

Of course, readability has a lot to do with programming
techniques. It’s often possible to do the same thing several
ways in Icon and some of Icon’s features may lead you to write
“cute” but impenetrable code where something simple,
straightforward, and understandable will do just as well. The
guidelines that follow do not attempt to address this issue;
they’re just some simple rules for program layout. You may
not agree with all these guidelines, but give them some
thought.

1. Put global, record, and link declarations at the
beginning of your program where they are easy to find.

2. Put the main procedure before all other procedures
so it’s easy to see where your program starts.

3. Arrange other procedures in some logical way,
either by category or alphabetically by procedure name.

4. Use white space liberally to reduce the “density” of
your code and to set apart logically connected parts of your
programs. Use blank lines to set off logically connected
segments of code.

5. Use blanks around binary operators, except in
subscripting expressions, to set operators apart from their
operands.

Downloading Icon Material

Most implementations of Icon are available for
downloading electronically:

BBS: (602) 621-2283

FTP: cs.arizona.edu (cd /icon)
(128.196.128.118 or 192.12.69.1)

2 / The Icon Analyst

Writing Portable Icon Programs

Most of the Icon programs you write probably are for
your own use and are never read by anyone else, much less
used by others on other computer systems.

If you’re writing Icon programs for use by others,
however, such as submissions to the Icon program library,
you should give some attention to making these programs as
portable as possible, so that they can be run on a wide variety
of computers and operating systems.

Icon itself is basically quite portable. All implementa-
tions of Icon to date, whether for personal computers or
mainframes, are based on the same source code. Conse-
quently, unlike most programming languages, you won’t find
different dialects or implementation quirks that make moving
a program from one platform to another a tedious and un-
pleasant task. Of course, Icon has evolved over a period of
time and you can’t expect a program written to run under
Version 8 of Icon to run under earlier versions. We’re assum-
ing Version 8 here.

Although Icon programs generally are quite portable,
there are system-specific extensions in some implementa-
tions of Icon and some underlying differences in systems that
cause portability problems.

Portability is a matter of degree. A program may be
truly portable and run on any system without modification.
Another program may, say, run on 90% of all systems, while
yet another may require changes to run on any system other
than the one on which it was written. Some programs are truly
non-portable and only run on one system.

Most of the issues that need to be considered when
trying to write portable Icon programs fall into three classes:

• language features to avoid

• character-set differences

• operating system differences

Language Features

Language features to avoid when writing portable pro-
grams fall into two classes:

• basic language features that are not implemented for
all systems

• implementation-specific extensions

The Icon keyword &features, which generates all the
major characteristics of the system on which it is evaluated,
provides a place to start. The first value generated by &fea-
tures is the operating system (for example, MS–DOS). The
second value generated is the character set (ASCII or EBC-
DIC). The remaining values list the supported features.

Of these features, two are basic in the sense that they are
part of the Icon programming language proper, while the
remaining features are more system-specific. The two basic

features that may not be supported on a specific implementa-
tion of Icon are co-expressions and large-integer arithmetic.

Co-expressions require assembly-language code to
switch from one evaluation context to another. This code may
be easy, difficult, or even (rarely) impossible to write, de-
pending on the architecture of the computer in question. Even
if the code is easy to write, it may not have been done yet
(many implementations of Icon for specific computers have
been done by individuals around the world). At the present
time, all the implementations of Icon that are distributed by
the Icon Project support co-expressions, with the exception of
some of the many variants of the UNIX implementation. As
of this writing, there are 56 such variants, of which 16 do not
support co-expressions. In a few cases co-expressions are
supported but do not always work correctly. Even in cases
where co-expressions are supported and work correctly, there
may be problems because of the large amount of memory that
co-expressions require. A program that uses co-expressions
intensively may work on one system but not on another.

If you want your programs to be truly portable, do not
use co-expressions.

Large-integer arithmetic is written entirely in C and can
be provided, in principle, for all implementations of Icon.
Icon, however, is a memory-intensive program and it barely
fits in the limited memory of some personal computers.
Large-integer arithmetic adds a lot of code bulk to Icon. For
this reason, large-integer arithmetic is not supported on some
personal computer implementations of Icon. Specifically, it’s
not supported on the Amiga, the Atari ST, and some versions
of the MS-DOS implementation of Icon.

Again, avoid large-integer arithmetic if you want your
programs to be portable.

There are other language features that are not part of the
basic Icon language, but which are available in specific
implementations. For example, ProIcon has extensive capa-
bilities for manipulating windows and menus. MS-DOS
implementations of Icon contain a set of functions specifi-
cally designed for the MS-DOS environment. Some UNIX
implementations provide a way of saving the execution state
of an Icon program so that it can be restarted later. Obviously,
programs that use such features are not portable.

Other non-basic features are more general in nature:

• environment variables

• pipes

• keyboard functions

• shell commands

Environment variables (called different things on dif-
ferent systems) allow communication of named values be-
tween the operating system and applications. Environment
variables are supported by most implementations of Icon. The
exceptions are ProIcon for the Macintosh (the Macintosh
operating system has no concept of environment variables)
and the Atari ST, when run in some environments.

The Icon Analyst / 3

fundamentally different relative positions for important
classes of characters. Uppercase letters have smaller codes
than lowercase ones in ASCII, while the opposite is true in
EBCDIC. Similarly, the digits have smaller codes than the
letters in ASCII, while the opposite is true in EBCDIC.

These differences in “collating sequences” show up in
lexical comparison and (hence) in sorting strings.

The confusion is compounded by different ways of
handling EBCDIC internal character codes (inside an Icon
program) and external codes (in files) in EBCDIC implemen-
tations of Icon. In the 370 implementations of Icon distributed
by the Icon project, the internal and external codes are the
same. For example, an "A" is 193 in both. This uniformity of
codes means that an Icon program that sorts strings on a 370
produces what 370 users expect in their environment. But the
results may be different from those if the Icon program is run
on an ASCII system. On the other hand, the 370 VM/CMS
implementation of Icon done by Walter Schiller in Germany
translates external EBCDIC codes to internal ASCII ones on
input and vice versa on output. This implementation produces
the same results when sorting strings on ASCII and EBCDIC
systems, but produces results in EBCDIC environments that
are different from what EBCDIC users may expect. The
character set shown by &features is ASCII for this implem-
entation, even though it runs on EBCDIC systems.

The 370 implementations of Icon that produce the
expected results on EBCDIC systems introduce portability
problems between ASCII and EBCDIC systems. On the other
hand, it’s not entirely clear what portability means in this
context — expected results for the local environment or
identical results in different environments.

The problems with character sets are not limited to
lexical comparison and sorting. The value of &ascii is essen-
tially meaningless when EBCDIC internal codes are used,
although the 370 implementations distributed by the Icon
Project approximate as best as possible the expected ASCII
characters. It’s certainly a good idea to avoid the use of &ascii
in programs that are intended to be portable.

Other portability problems can arise from the way
“special” characters are represented in programs. For ex-
ample, the value of char(9) is a tab character in ASCII but not
in EBCDIC. Any reference to a character by its code or
position in the character set should be avoided. Instead, literal
escape sequences, such as "\t", should be used when writing
portable programs. Icon handles these in the expected way,
regardless of the character set.

Also do not assume that any particular numerical code
(such as one above 127) is safe to use as a character that will
not appear in “ordinary text”. In ASCII, some systems, such
as the Macintosh, use nearly every character for text. In
EBCDIC, the printable characters are distributed from the
lower numerical codes through the higher ones.

It’s also worth noting that IBM 370 systems do not have
the same set of control characters as ASCII systems. The
characters produced by Icon’s control escape sequences, such

Since most Icon programs do not use environment
variables, their support usually is not a portability issue. It’s
worth noting that getenv(s), which returns the value of the
environment variable s if it is set, fails if environment vari-
ables are not supported (on the principle that in the absence of
environment variables, none can be set).

Pipes, which allow the output of one process to be fed
to the input of another, require (at least) a multi-tasking
operating system. Pipes are supported only in the UNIX,
VMS, and OS/2 implementations of Icon. An attempt to open
a file as a pipe, which is how Icon uses the facility, causes a
run-time error on implementations of Icon that do not support
pipes. While pipes allow many things to be done from within
an Icon program that could not be done otherwise, they should
not be used in a program that’s intended to be portable.

The keyboard functions getch(), getche(), and kbhit()
allow direct input to an Icon program from the console of the
computer on which it’s running. These keyboard functions
often are used in interactive applications, but they are sup-
ported only on “personal computers”, not UNIX, VMS, or
IBM 370 systems.

Programs that use keyboard functions are apt to be non-
portable anyway, since they typically depend on the charac-
teristics of specific devices, such as monitors.

The function system(s) issues s as a command to be
executed by the operating system (“shell”). This only makes
sense if the operating system supports a “command-line
interface” (the Macintosh operating system does not). The use
of system() is problematical in any event, since it may not
work properly even on implementations that support it in
principle. For example, MS-DOS implementations of Icon
support system(), but the command may fail for lack of
memory. Furthermore, shell commands vary from system to
system, and there’s little in the way of commands that is
portable.

Character Sets

Most implementations of Icon use the ASCII character
set. The exceptions are the CMS and MVS operating systems
for the IBM 370 architecture, which use the EBCDIC charac-
ter set.

Character set differences can cause all kinds of prob-
lems in program portability. Some of the problems are subtle
and difficult to understand.

Both ASCII and EBCDIC have 256 different charac-
ters, represented internally by numerical codes from 0 to 255.
The problem is that the two character sets associate “print-
able” characters and control functions with numerical codes
in different ways.

In ASCII, for example, the numerical code for "A" is 65,
while in EBCDIC, it is 193. (The Icon function ord(s) returns
the code for the one-character string s.)

Not only is the association of codes for printable char-
acters different in ASCII and EBCDIC, but the codes are in

4 / The Icon Analyst

as "\^C" may mean nothing or something different from what
they do on ASCII systems.

Another matter related to character sets concerns the
characters that are “printable” in EBCDIC. While all print-
able characters are associated with numerical codes in a
standard way in ASCII, this is not true of EBCDIC. In fact,
there are several different commonly used EBCDIC map-
pings between codes and printable characters. These map-
pings all agree on the codes for letters, numbers, and “com-
mon” punctuation marks, but they disagree on characters like
braces and brackets. The associations between numerical
codes and EBCDIC printable characters used in the 370
implementations of Icon distributed by the Icon Project are
listed in Appendix B of the second edition of The Icon
Programming Language.

Worse yet, most 370 terminals do not provide a way of
entering braces and some can’t handle brackets either. (Line
printers without lowercase letters also are common in 370
environments, but that’s a different problem.)

Since braces and brackets are an important part of the
syntax of Icon programs, Version 8 of Icon supports the
following “digraph” equivalents:

standard character digraph

{ $(
} $)
[$<
] $>

These digraphs work on ASCII implementations of Icon also.
In principle, if you’re trying to write a program to be portable
to an EBCDIC system, you should use these digraphs. That’s
a bit much to ask, however. Fortunately, the Icon program
library for EBCDIC systems has a program for converting
from standard characters to digraphs, and conversely. Since
the problem with braces and brackets is peculiar to the
EBCDIC world, it seems reasonable for 370 Icon program-
mers to perform the necessary conversions.

Operating System Differences

Most Icon programs do not deal directly with the
operating system on which they run. Icon itself has most of the
necessary facilities for operations like opening and closing
files, as well as renaming and deleting them. Nonetheless,
these facilities must communicate with the operating system.

Some operating systems (notably ones for the IBM
370) don’t support hierarchical file systems (directories), but
have fundamentally different ways of organizing collections
of data. Other operating systems have different methods for
specifying directory paths and logical devices. All of these
concepts are fundamentally non-portable.

File naming conventions differ from operating system
to operating system. As far as portability is concerned, it’s a
good idea to avoid creating files or referring to specific files

if you don’t have to. Standard input and standard output are
the best choices in situations where they will do. If your
program must create or reference file names of its own
choosing, be careful and be conservative. Keep file names
short and simple. Stick to letters (even the underscore cannot
be used in file names on some systems). Realize that upper-
and lowercase letters are distinct on some systems and equiva-
lent on others. If you use a period to separate part of a file name
from its “extension”, use the MS-DOS convention: at most 8
characters before the period and at most 3 after. Never use
more than one period in a file name.

Some systems, such as MS-DOS, allow specific de-
vices (like a printer) to be opened like files. This kind of
facility is obviously non-portable.

There are subtler problems with input and output. Some
systems, noticeably those that run on the IBM 370, have strict
limits on the lengths of lines. An attempt to write a line longer
than the limit results it its being broken up into multiple lines.

Output to a monitor is always problematical. You’d
probably expect long lines to be treated differently by differ-
ent devices (wrapped or truncated), but you might not be
prepared for MPW on the Macintosh, in which a line written
by writes() is overwritten from the beginning by the next line
of output. There’s no hope of writing portable programs to
work with monitors, and you shouldn’t try.

Uncertainties

You can count on at least 32-bit integer arithmetic in
Icon, even in the absence of support for integers of arbitrarily
large magnitude. A few implementations of Icon, such as the
one for the Cray-2, have 64-bit integers. This possible differ-
ence is unlikely to affect most programs.

Icon’s random number sequence, which is used in all
random selection operations, is the same on most systems, but
you can’t count on it.

Sorting in Icon uses the C run-time library routine
qsort(). Some implementations of qsort() are stable but
others are not (in an unstable sort, equivalent values may
change in relative position). Consequently, sorting values
other than numbers and strings may produce slightly different
results on different systems.

Summary

While there are many considerations in writing pro-
grams to be portable over a wide range of systems, the main
ones are:

• Do not use co-expressions, large-integer arithmetic,
or any system-specific functions.

• Be careful about character set differences; do not
refer to characters by their numerical codes.

• Avoid the use of named files and file structures.

• Keep input and output simple and modest with
respect to line length.

The Icon Analyst / 5

String Scanning

String scanning probably causes more frustration than
any other major feature of Icon. Most of the problems with
string scanning concern how to use it — how to formulate
scanning expressions to solve specific string analysis and
synthesis problems. Other problems with string scanning
relate to style and efficiency.

In order to use string scanning effectively, it’s impor-
tant to understand its essential characteristics. Icon program-
mers often think of string scanning as a complex feature. In
fact, string scanning is very simple. The power of string
scanning comes from other aspects of Icon: its notion of
strings, generators and goal-directed evaluation, and its rep-
ertoire of string-analysis functions. This is the first of a series
of articles that describe various aspects of string scanning and
its use. Much of the material in this first article will be familiar
to practiced Icon programmers, but the viewpoint may be
new.

Conceptual Basis

As described in the second edition of the Icon language
book, the design of string scanning is based on the observation
that most kinds of string analysis can be cast in terms of a
succession of computations on a single string. This string,
called the subject, is the focus of attention during string
scanning. Different string scanning expressions may, of
course, have different subjects. But during the evaluation of
any one scanning expression, the subject (normally) does not
change.

Another observation is that most string-analysis opera-
tions can be cast in terms of the examination of the subject at
some specific location. The examination may cause the loca-
tion to be changed — hence the term scanning. Most often, the
numerical value associated with the location is not of interest.
The interesting thing usually is what character is there or what
substring starts or ends there. In analyzing a sentence, for
example, certain words and their relative positions may be
important, but their specific locations in terms of character
count in the sentence usually are not.

Scanning Environments

The subject, together with the current location, called
the position, constitute a scanning environment associated
with a scanning expression. We’ll denote the scanning envi-
ronment by {subject, position}. This is not an Icon value; it’s
just a notation for talking about scanning environments. As
mentioned above, the subject portion of a scanning environ-
ment normally does not change during the evaluation of a
scanning expression, but the position usually does.

 A change in the scanning environment as the result of
changing the position normally is implicit and happens as a
side effect of an analysis operation. String-analysis opera-
tions usually can be written without any explicit reference to

the subject or the position. This eliminates clerical detail and
tedious (and error-prone) numerical computations that are
characteristic of lower-level forms of string analysis.

Program execution begins with the scanning environ-
ment {"", 1}, as if scanning were about to take place at the
beginning of an empty string. New scanning environments are
created by string scanning expressions, which have the form

expr1 ? expr2

where expr1 is called the subject expression and expr2 is
called (somewhat misleadingly) the analysis expression. In
most cases, the subject expression is simple, such as a string-
valued variable. But, as is generally true in Icon, the subject
expression can be any expression. The result of evaluating the
subject expression must, of course, be a string or a type that
can be converted to a string. We’ll describe some possibilities
for more complicated kinds of subject expressions in a subse-
quent article.

Before the subject expression is evaluated, the current
scanning environment is saved. The evaluation of the subject
expression establishes a new scanning environment with the
its value as the subject and the initial position at the beginning
of this subject. For example, if the value of word is "exem-
plary", the initial scanning environment for

word ? while write(move(1))

is {"exemplary", 1}.

When a scanning expression is finished, it restores the
scanning environment that it saved before it began.

Matching Functions

The functions move(i) and tab(i), which should be
familiar to all Icon programmers, illustrate the concepts of
scanning and the way the position is changed as a side effect
of their evaluation. These functions are called matching
functions, since they return the substring of the subject be-
tween the positions before and after their evaluation — the
portion of the subject matched. Matching functions fail if the
new position would be out of the bounds of the subject. Thus,
failure of a matching function provides a natural way to
control loops in string scanning.

The function move(i) increments the position by i.
Since move(i) causes relative movement in the subject, its
argument usually is some specific number, as in the example
at the end of the preceding section. When using move(i) to
scan, the actual value of the position is not evident — it just
moves along the subject. In the example above, move(1)
changes the scanning environment successively to {"exem-
plary", 2}, { "exemplary", 3}, …, and finally to {"exem-
plary", 10}, while writing the characters matched.

On the other hand, tab(i) sets the position to a specific
value. Except in the case of scanning strings with data in
fixed-position fields, the argument of tab(i) usually is not a
specific value. Instead, it often is supplied by a string analysis

6 / The Icon Analyst

function, as in

sentence ? while tab(upto(&letters)) do
 write(tab(many(&letters)))

Again, it’s not necessary to know the specific positions.

A common use of tab(i) is to set the position at the right
end of the subject by using tab(0). Note that although the
argument here is an integer, the specific position is not
specified or even of interest.

An important aspect of matching functions is data
backtracking. When a matching function produces a result, it
suspends, even though it cannot produce another result (there
is only one way to set the position to a specific value). If a
subsequent expression fails, the suspended matching function
is resumed, and it restores the position to the value it had prior
to the evaluation of the matching function, thus restoring the
scanning environment to its former value.

Data backtracking performed by matching functions
assures that alternative expressions start at the same place. For
example, in

sentence ? {
 (tab(5) & find("the")) | tab(0)
 }

if tab(5) succeeds but find("the") fails, the resumption of
tab(5) restores the position to its previous value (at the
beginning of the subject) and tab(0) starts at the same position
as tab(5) did.

Maintenance of Scanning Environments

Scanning expressions are on a par with all other expres-
sions in Icon. Consequently, scanning expressions can occur
in conjunction, as in

(expr1 ? expr2) & (expr3 ? expr4)

Scanning expressions also can be nested, as in

(expr1 ? (expr2 ? expr3))

Procedures called in analysis expressions also can contain
scanning expressions. For example, in

expr1 ? p()

p() itself may contain scanning expressions. This situation
amounts to dynamic nesting, and it occurs more frequently in
practice than the static form of nesting shown above.

In order for such constructions to behave in a reasonable
way, Icon maintains multiple scanning environments. Scan-
ning environments are global with respect to procedure calls,
but they are local to scanning expressions.

As mentioned earlier, execution begins with the scan-
ning environment: {"",1} (an empty, zero-length subject).
When a scanning expression is evaluated, it saves the current
scanning environment and creates a new one. If the scanning
expression fails, it restores the previously saved scanning
environment. If the scanning expression suspends, its scan-

ning environment is saved (since it may be resumed) and the
previous scanning environment is restored. A scanning envi-
ronment remains in existence until its corresponding analysis
expression fails or until it is no longer possible to resume it.
This occurs as the result of control structures that discard
suspended generators.

Because of the possibility of scanning expressions in
conjunction as well as nested scanning expressions, the struc-
ture connecting saved scanning environments is a tree, not a
stack. (This is true of suspended generators, also.)

In general, the tree of scanning environments is rooted
in the scanning environment associated with the initiation of
program execution as described above. There are two ways
that the tree of scanning environments can grow. One is
horizontally, as in expressions such as

(expr1 ? expr2) & (expr3 ? expr4) & …

The other is vertically, as in expressions such as

(expr1 ? (expr2 ? (expr3 ? (expr4 ...))))

In horizontal growth of the scanning environment tree, an
analysis expression is suspended during the evaluation of a
subsequent expression. In vertical growth, before an analysis
expression completes evaluation, a scanning expression that
is nested within it is evaluated. Vertical growth usually
appears in programs in the form of matching procedures that
themselves contain scanning expressions, as mentioned
above.

As an example, consider the evaluation of the following
expression:

("abc" ? move(2 | 1)) &
("defg" ? (tab(4) ? move(1 | 2)))

Assuming that there is no other surrounding expression, the
evaluation of

"abc" ? move(2 | 1)

causes the scanning environment tree to become

{"", 1}

{"abc", 3}

When

"abc" ? tab(2 | 1)

suspends,

"defg" ? (tab(4) ? move(1 | 2))

is evaluated. The tree of scanning environments grows hori-

The Icon Analyst / 7

zontally. After the evaluation of tab(4), the tree is:

{"", 1}

{"abc", 3} {"defg", 4}

Evaluation of the nested scanning expression then causes the
tree of scanning environments to grow vertically:

{"", 1}

{"abc", 3} {"defg", 4}

{"def", 2}

If the expression above appears in a context that causes it to
be resumed, as in

(("abc" ? move(2 | 1)) &
("defg" ? (tab(4) ? move(1 | 2)))) & expr

where expr fails, then the expression move(1 | 2) is resumed
and the last scanning environment is changed:

{"", 1}

{"abc", 3} {"defg", 4}

{"def", 3}

Further resumption produces no new result for this expres-
sion, resumption of tab(4) produces no new result, the second
scanning expression in the mutual evaluation produces no
new result, and move(2 | 1) in the first scanning expression
in the mutual evaluation is resumed. At this point, the scan-
ning environment tree again has the form

{"", 1}

{"abc", 3}

Note that two scanning environments were discarded as the
result of the failure of scanning expressions.

The second result for move(2 | 1) changes this environ-
ment to

{"", 1}

{"abc", 2}

At this point the second scanning expression in the mutual
evaluation is evaluated again, and the tree of scanning envi-
ronments grows again in a fashion similar to that illustrated
above. The tree of scanning environments reverts to a single
root node only when all alternatives in the mutual evaluation
have been produced.

Note that all the nodes along the right edge of the tree of
scanning environments correspond to expressions whose
evaluation is incomplete and are “active”, while all other
nodes correspond to inactive expressions that may produce
another result if they are resumed because of failure of
expressions corresponding to nodes to their right.

Next Time

This article mainly provides food for thought and back-
ground. Subsequent articles will be more concerned with
actually using string scanning than with the conceptual as-
pects discussed here.

The material here is nonetheless important to using
string scanning effectively. Look at some of the scanning
expressions you’ve written and see how it applies to them.

8 / The Icon Analyst

Generators

In the last issue of the Analyst, we discussed the basic
aspects of expression evaluation in Icon: success, failure, and
generation.

Generation lies at the heart of Icon. Generation arises
naturally from the concept of computations that may have
more than one alternative. The alternation control structure,

expr1 | expr2

allows you to formulate this kind of computation explicitly, in
terms of possible alternatives. And, of course, if there are
several alternatives, these can be given in a compound alter-
nation:

expr1 | expr2 | expr3 | … | exprn

Iteration

As mentioned in the previous article on expression
evaluation, a generator only produces an alternative if it is
resumed: There must be some context that needs an alterna-
tive for a generator to produce more than one result. This
context may be implicit, as in

counter = (1 | 2 | 3 | 4)

in which the alternation expressions are resumed to produce
alternatives only if the numerical comparison operation fails.
For example, if the value of counter is 2, only two of the four
possible alternatives are produced.

Sometimes it is useful to force a generator to produce all
its alternatives. This is expressed in Icon explicitly by the
iteration control structure:

every expr1 do expr2

which repeatedly resumes expr1 and evaluates expr2 for each
alternative produced by expr1. And example of iteration is

every i := (1 | 2 | 3 | 4) do
 if counter > i then write(i)

which assigns the values 1, 2, 3, 4 to i and compares each with
counter, writing only the ones that are less than counter.

Built-In Generators

Some kinds of generators are used so frequently that
Icon provides them as part of its built-in computational
repertoire. For example, integers often are needed in se-
quence. The expression

i to j by k

produces the integers from i to j in increments of k. If the by
clause is omitted, the increment defaults to 1. Thus, the
previous example could be written as

every i := 1 to 4 do
 if counter > i then write(i)

This form is easier to read than the explicit alternation. It also
is more concise, especially for large ranges. More important,
the range for the sequence need not be known when a program
is written, while it must be fixed and known in advance if
explicit alternation is used.

You may have noticed the similarity between the every-
do loops shown above and for loops that are commonly found
in other programming languages. Consider

every i := 1 to 100 do
 write(sqrt(i))

Although this resembles a for loop, it really is composed of
iteration and a generator. There are many other possible
combinations of iteration with generation that provide more
flexibility and conciseness than are possible with for loops.

There’s also another possibility. The argument of a
function can be a generator, as in

write(sqrt(1 to 100))

Standing alone, this expression just writes 1. But put it in an
iteration expression such as

every write(sqrt(1 to 100))

and you have a compact expression for writing the square roots
of the integers from 1 to 100.

Two things here deserve note. The do clause in iteration
is optional; if there’s nothing to do, you can leave it out. The
other important matter is that a generator that’s inside another
expression is resumed if an alternative for the expression is
needed. In the example above, iteration requests the next
alternative. Although write() and sqrt() themselves have no
alternatives, there are alternative arguments for sqrt() and
hence for write().

As you probably know, there are other built-in genera-
tors — but perhaps fewer than you might expect. In fact, only
five functions and two operators are generators:

find() locations of substrings
upto() locations of characters
bal() locations of characters following

 balanced strings

i to j by k integers in finite sequence
seq() integers in endless sequence

!x elements of structures, etc.
key() keys in table

There also are four keywords that are generators:

&features implementation features
&collections garbage collections
®ions storage region sizes
&storage storage region utilizations

We’ll explain later why there are so comparatively few built-
in generators in Icon’s repertoire.

The Icon Analyst / 9

Another Look at Alternation

Our examples of alternation so far all have had simple
arguments. Suppose an argument of alternation is a generator,
as in

(1 to 10) | (21 to 30)

What results does this expression generate? There are compli-
cated, step-by-step ways of describing alternation, but there’s
also a very simple answer: The alternation of two expressions
produces the results of the first expression followed by the
results of the second expression. Thus,

every write((1 to 10) | (21 to 30))

writes 1, 2, … 10, 21, 22, … 30.

You may find it helpful to remember this simple char-
acterization of alternation, since you may find times when you
want to write a generator that produces two sequences of
results, one after the other.

Programmer-Defined Generators

Although Icon has relatively few built-in generators,
you can make your own generators by using procedures. The
idea is simple: Instead of just returning a result from a
procedure, you can write the procedure to produce a result, but
suspend, so that it can be resumed to produce alternatives. All
you need to do to accomplish this is to use suspend instead
of return when you want a procedure to produce a result.

Consider, for example, a procedure to generate the
square roots of the integers between i and j, inclusive:

procedure roots(i,j)
 every k := i to j do
 suspend sqrt(k)
end

The procedure computes a square root and produces this result
by suspending, instead of returning. If the procedure call is
resumed, evaluation continues in the procedure immediately
after the suspend expression, namely at the end of the do
clause. The every loop continues, the counter is incremented,
and another result is produced by suspension, and so on. If the
procedure is resumed repeatedly until the end of the integer
sequence and hence the every loop, control flows off the end
of the procedure body. That is, this resumption of the suspend-
ing procedure fails and produces no alternative.

There’s an important feature of suspend that allows
procedures such as this one to be written more compactly. The
suspend expression resumes its argument for alternatives in
the manner of the every expression. In the procedure above,
the argument of suspend is not a generator, so this feature is
not used. But since suspend resumes its argument, it’s not
necessary to have both every and suspend. The following,
simpler form will do:

procedure roots(i,j)
 suspend sqrt(i to j)
end

When a suspended call of this procedure is resumed, the
generator that is the argument of sqrt() is resumed and the
procedure suspends again with the new result.

There’s no limit to what you can do with programmer-
defined generators. In fact, since generation is such an impor-
tant aspect of expression evaluation in Icon, when you’re
deciding how to formulate a computation using a procedure,
you should ask yourself if the computation might be better
cast as a generator than, say, as a procedure that just returns a
single value and has to be called many times. The answer to
such a question depends on the nature of the computation, the
context in which it is used, and whether generation is a natural
approach. Think about Icon’s built-in generators in this regard
— why the computations they perform are better cast in terms
of generation than the production of single values.

Limitation

The function seq(), mentioned earlier, generates an
unending sequence of integers: 1, 2, 3, … . The idea that a
generator may produce an infinite number of alternatives may
be alarming. What’s to prevent it from going into a loop, out
of control?

In the first place, a generator does not produce its
alternatives spontaneously. There must be some context that
causes a generator to be resumed in order for it to produce an
alternative. For example,

i := seq()

just assigns 1 to i and then goes on to the next expression.

Nonetheless, infinite generators can get out of control:

every write(sqrt(seq()))

writes the square roots of the positive integers endlessly;
there’s nothing to stop iteration from repeatedly resuming
seq().

Icon provides a way to prevent such problems. The
limitation control structure

expr \ i

limits expr to at most i results. Consequently,

every write(sqrt(seq() \ 1000))

writes only the square roots of the integers from 1 through
1,000.

The limit need not be applied directly to the generator;
it can be moved out to apply to the entire argument of every:

every write(sqrt(seq())) \ 1000

In the example given here, it would be more natural to
use a finite generator that did not need to be limited:

every write(sqrt(1 to 1000))

In most cases, however, there is not a convenient finite form
for an infinite generator.

10 / The Icon Analyst

Repeated Alternation

Just as loops are useful in conventional computation for
performing computational tasks repeatedly, there are times
when you’ll find it useful to produce alternatives repeatedly.
If the number of repetitions you want is fixed, you can write
an explicit compound alternation:

expr1 | expr2 | … | exprn

But if you want this to go on indefinitely, you can’t use such
an expression. Icon provides repeated alternation for this
purpose:

|expr

This expression generates the alternatives for expr,
generates them again, and so on, endlessly. Repeated alterna-
tion, with an exception we’ll mention soon, is an infinite
generator. Consider a simple case:

|1

This expression generates 1, 1, 1, … endlessly. If the argu-
ment of repeated alternation is a generator, its alternatives are
produced repeatedly:

|(1 to 3)

generates 1, 2, 3, 1, 2, 3, 1, 2, 3,… .

As with any generator, repeated alternation can be
limited:

|(1 to 3) \ 5

generates 1, 2, 3, 1, 2. Note that limitation applies to the total
number of alternatives, not the number of repetitions.

The important exception to the infinite generation of
repeated alternation is that it stops if its argument ever fails to
produce a single result. This may seem a bit strange. If an
expression fails, why put it in repeated alternation?

One of the reasons for this special termination is to
prevent a disaster if the argument of repeated alternation fails.
Consider

|(1 = 0)

If repeated alternation kept going, expression evaluation
would get stuck; since (1 = 0) never produces a result, the
expression above would never suspend so that any further
evaluation could take place.

Of course, you wouldn’t write an expression like this
intentionally, but there are plenty of less obvious ways to get
into this potential bind.

Aside from this concern, there are computationally
useful aspects for the termination condition for repeated
alternation. Some expressions succeed at one time and fail at
another. An example is read(), which produces a result as
long as there is data left in the input file, but fails if there is not.
Thus,

|read()

is an expression that generates the lines from the input file but
stops when there are no more. If you like to program in terms
of generators, you can write

every process(|read())

instead of the more straightforward

while process(read())

We recommend the second form, but the first one is worth
thinking about.

The Rationale for Generators

There’s an interesting question here. Why isn’t read()
a generator instead of just a function that produces a line every
time it is evaluated? In fact, if generators are so great, why are
there so few in Icon’s built-in repertoire? Why isn’t every-
thing a generator?

It isn’t hard to answer the last question — generators are
only reasonable for computations in which there are natural
alternatives. It makes no sense for addition to be a generator.

But isn’t it reasonable to think of reading lines as
producing alternatives and hence cast the operation as a
generator? In a sense, this view is reasonable. The reason why
such operations are not generators lies in the possibility of
undesired resumption. Suppose, for example, that Icon’s
random-number operation were a generator. Then in an ex-
pression like

if i > ?j then …

if i were less than the value produced by ?j, ?j would be
resumed to produce an alternative. This would continue
forever if i were greater than j. In any event, there would be no
way to know how many alternative random numbers were
produced, even if the comparison eventually succeeded.

Put another way, generators are powerful, but they also
are dangerous. For this reason, Icon’s built-in repertoire of
generators is limited to operations that are most naturally cast
in terms of alternative results of computation.

If you’re not happy with this, you can write procedures
that serve as generators. Or you can always turn a non-
generator into a generator:

|?i

is a generator of random numbers.

Back Issues

Back issues of The Icon Analyst are
available for $5 each. This price includes shipping
in the United States, Canada, and Mexico. Add $2
per copy for airmail postage to other countries.

The Icon Analyst / 11

Case Expressions

Sometimes it’s helpful to remember that a case selec-
tion expression need not be a constant. In fact, it can be a
generator. If it is, the selector matches if any generated value
matches. The usefulness of this programming technique is
illustrated by the following example:

case response of {
 "y" | "Y" : action := "yes"
 "n" | "N" : action := "no"
 }

Think of the kinds of expressions that are generators and you
should see lots of other interesting possibilities for this tech-
nique.

It may also be helpful to know that a case expression in
Icon is equivalent to if … then … else if …, in which the
control expressions use general value comparison. For ex-
ample, the case expression above is equivalent to

if response === ("y" | "Y") then action := "yes"
else if response === ("n" | "N") then action := "no"

Automatic Type Conversion

Lots of things in a programming language go toward
making it easy or hard to write programs. Automatic type
conversion is one of the features that makes it easy to write

Programming
Tips

programs in Icon. You can, for example, write an integer
without having to explicitly convert it to a string, as in

every write(2 ^ (0 to limit))

Automatic type checking and conversion are integral
parts of Icon and you should use them without reservation or
suspicion. Mistrust in automatic type conversion sometimes
shows up in the form of unnecessary explicit conversions, as
in

every write(string(2 ^ (0 to limit)))

with a comment like “just to be sure”. Such explicit type
conversions are not only unnecessary, but they are actually
inefficient, not to mention confusing to someone who reads
them.

Despite the usefulness of automatic type conversion, it
sometimes hides inappropriate data and inefficiency. We
frequently see expressions like this:

upto(" ")

The function upto() expects a cset. If it’s given a string, as in
this case, the string is automatically converted to a cset and
the expressions works just as if it had been written

upto(' ')

Although the first form works properly, the type con-
version takes time. The amount of time required for the
conversion is proportional to the length of the string being
converted.

If you’re just starting to learn Icon, having to remember
what functions expect csets is just one more chore. And it’s
easy for even an experienced Icon programmer to use double
quotes where single quotes are appropriate. It’s worth look-
ing over your programs and seeing if the types of literals
you’ve used are appropriate.

12 / The Icon Analyst

From the Wizards

The following little
program by Anthony
Hewitt was mentioned in

Icon Newsletter 32.
We’re including it
here, since it deserves
some discussion. You
may or may not think it
constitutes wizardry.
Granted, it’s a bit tricky,
but then wizards often
are. Wizardry or not, it’s
clever, concise, and
much in the spirit of idiomatic Icon. Here’s the program:

procedure main()
 write(s := !&input)
 every write(s ~==:= !&input)
end

It has a simple function — to filter out adjacent duplicate lines
in standard input.

You might pause at

s := !&input

It’s equivalent to

s := read()

and just reads the first line of standard input. The form used
here is becuase of the next line, which is the key to the
program:

every write(s ~==:= !&input)

This expression reads a line of input. If it’s different from the
previous line, which is the value of s, it assigns the new line
to s and writes it. If the new line is the same as the previous
one, the augmented assignment fails and nothing is written.
The every control structure keeps this going until the file is
exhausted.

If you prefer read() to !&input, you need to construct
a generator to keep reading. Repeated alternation does this,
and the result is

procedure main()
 write(s := read())
 every write(s ~==:= |read())
end

The two lines in the procedure body can even be combined
into one:

procedure main()
 every write((s := read()) | (s ~==:= |read()))
end

The Icon Analyst

Madge T. Griswold and Ralph E. Griswold
Editors

The Icon Analyst is published six times a year. A
one-year subscription is $25 in the United States,
Canada, and Mexico and $35 elsewhere. To sub-
scribe, contact

Icon Project
Department of Computer Science
Gould-Simpson Building
The University of Arizona
Tucson, Arizona 85721
U.S.A.

(602) 621-8448

FAX: (602) 621-4246

Electronic mail may be sent to:

icon-project@cs.arizona.edu

or

...{uunet,allegra,noao}!arizona!icon-project

and

© 1990 by Madge T. Griswold and Ralph E. Griswold
All rights reserved.

The Bright Forest Company
 Tucson Arizona

What’s Coming Up

In the next issue of the Analyst, we’ll continue the
series on string scanning with an article on how to formulate
scanning expressions and give some examples.

There also will be articles on programs that write
programs, large-integer arithmetic, and memory utilization.

