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1. INTRODUCTION
We describe an efficient algorithm and implementation for
morphing planar graphs. The algorithm generalizes the no-
tion of compatible triangulations of polygons to compati-
ble triangulations of planar graphs and applies a combina-
tion of rigid-motion morph and barycentric-representation
morph to find smooth and crossings-free transformations
between different drawings of a given planar graph. The
video presentation and our Java applet can be found at
http://gmorph.cs.arizona.edu.

Morphing refers to the process of transforming one shape
(the source) into another (the target). Morphing is widely
used in graph drawing, computer graphics, animation, and
modeling [2, 3, 4]. In planar graph morphing we would like
to transform a given source graph to another pre-specified
target graph. Smooth transformation of one graph into an-
other is useful for numerous graph drawing problems. In
particular, when dealing with dynamic graphs and graphs
that change through time, it is important to preserve the
mental map of the user. Thus, it is important to minimize
the changes to the drawing and to create a smooth transition
between consecutive drawings.

We consider the problem of morphing between two draw-
ings, Ds and Dt, of the same planar graph G = (V, E). We
assume that both drawings are crossings-free and realize the
same embedding of G (otherwise, a crossing-free morph does
not exist). The source drawing Ds and the target drawing
Dt can be straight-line drawings, or drawings with bends
and curves. The main objective is to find a morph that pre-
serves planarity throughout the transformation. Secondary
objectives include obtaining simple and smooth trajectories
for the vertices (and bends) and preserving drawing invari-
ants throughout the transformation.

2. THE ALGORITHM
Our algorithm has five main steps which we summarize be-
low.

Introduction of Bend Vertices: We begin by introducing
all the bend vertices in both Ds and Dt; see Fig. 1.

Introduction of Convex Bounding Box: The morping
stages of the algorithm require that Ds and Dt share the
same outer face. In the general setting for planar graphs
this usually will not be the case. To handle this problem we
embed each of Ds and Dt inside bounding boxes, Bs and
Bt. We select a vertex vs in Ds that is visible from one of
the bounding box vertices, bs in Bs. We connect vs and bs

with a straight-line segment. In Dt we find the vertex vt

(that corresponds to vs in Ds) and connect it via a path to
vertex bt in Dt (that corresponds to bs in Bs).

Compatible Triangulations: Given the embedding of Ds,
i.e., the clockwise order of the edges around each vertex in
Ds, it is easy to identify the faces. We make each edge bi-
directed and traverse through the directed edges, each time
following a neighboring edge in the clockwise order. This
traversal continues until all the edges are traversed in which
case we have all the faces identified. Next, given two corre-
sponding faces (polygons) we compatibly triangulate them,
i.e. triangulate them in such a way that the resulting trian-
gulations are isomorphic. In general, it is not always possible
to compatibly triangulate two simple polygons. However, if
we allow the introduction of Steiner points then we can al-
ways find a compatible triangulation, using O(k2) Steiner
points, where k is the number of vertices in each polygon.
We use the algorithm of [1] to construct compatible trian-
gulations. We describe how we generalize this approach to
general planar graphs in [2].

Rigid-Motion Morph: We begin by aligning the two draw-
ings using 2-D transformations consisting of translation, ro-
tation, scaling, and shearing. That is, we move the source
drawing as close as possible to the target drawing as a rigid
object in space. All these transformations can be accommo-
dated by an affine matrix, which can be considered a 2 × 2
matrix, appended with a translation row:��

c11 c12 0
c21 c22 0
tx ty 1

��

Then a point (x, y) which can be represented with the vec-
tor [x y 1] and multiplied on the right by the matrix, is
transformed into (x′, y′) using the linear equations: x′ =
c11x + c21y + tx and y′ = c12x + c22y + ty.

Given a point ps = (xs, ys) in Ds and the corresponding
target point pt = (xt, yt) in Dt, we want p′

s, the resulting
point after the transformations being applied on ps, to be as
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Figure 1: Part (a) shows the graphs to be morphed: the source is on the top and target is on the bottom. Part (b) shows the
addition of the bend vertices u, v, w, x (shown as squares). Part (c) shows the independent triangulation of both graphs (dashed
edges). Part (d) shows the compatible triangulation with three Steiner points 1, 2, 3 (shown as diamonds).

close as possible to the target point pt. Thus, to align the
two drawings as best as possible we minimize the sum of
squares of all the pairwise distances: �

ps∈Ds

dist2(p′

s, pt)
where dist is the Euclidean distance between two points.
Minimizing this sum can be realized by setting the derivative
with respect to cij , tx, ty to zero and solving the resulting
equations which can be done in linear time.

Once we find the affine matrix of transformations, M , it is
straight-forward to perform a linear interpolation in order
to obtain the sequence of matrices throughout the morph in
the rigid motion stage: (1 − t) × I + t × M , where I is the
identity matrix. However, the linear interpolation can lead
to degeneracies, such as the collapse of the drawing to a sin-
gle point. As rotation is the only rigid transformation that
is distorted by matrix interpolation we extract the rotation
from a given affine matrix of transformations in constant
time. Then the linear interpolation of M does not intro-
duce degeneracies, and the rotation is applied separately by
a linear interpolation of the rotation angle. Thus, we obtain
the first part of the trajectories for the vertices (the remain-
ing part is computed in the third stage of the algorithm).

Barycentric-Representation Morph: In this stage of
the algorithm we compute the remaining part of the trajec-
tories of the vertices. In 1963 Tutte [5] proposed the fol-
lowing barycentric mapping to generate straight line draw-
ing of a 3-connected planar graph G: Given an embedding
of G, we map the outer face of G onto a convex polygon.
Then the locations of interior vertices are determined by
their barycentric coordinates:

ui = �
j∈N(i)

λij × uj , �
j∈N(i)

λij = 1,

where λij is called a barycentric coordinate of ui with re-
spect to uj and N(i) is the set of neighbors of ui. In Tutte’s
mapping ,λij = 1/di, where di is the degree of ui.

These barycentric coordinates can be used to morph com-
patible triangulations [3]. We obtain a barycentric repre-
sentation of source/target triangulations as n × n matrices
( λij is the entry at row i and column j), call them Ms and
Mt respectively, and apply a linear interpolation from Ms

to Mt, (1− t)×Ms + t×Mt. Since throughout the interpo-

lation each resulting matrix is a barycentric representation
the sequence of graphs obtained from these matrices are all
planar and the morphing is crossings-free.

3. THE VIDEO
The video illustrates the main stages of the algorithm: in-
troduction of bend vertices, introduction of bounding boxes,
compatible triangulations, rigid morphing, and barycentric
morphing. We have implemented our algorithm in Java.
Fig 2 shows a sample snapshot from a morphing sequence.
Top-left is the source and bottom-right is the target draw-
ing. The video and the Java applet can be found at http:

//gmorph.cs.arizona.edu.

Figure 2: Morphing snapshot
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