
Intersection-Free Morphing of Planar Graphs?

(System Demo)

Cesim Erten1, Stephen G. Kobourov1, and Chandan Pitta2

1 Department of Computer Science
University of Arizona

{cesim,kobourov}@cs.arizona.edu
2 Department of Electrical and Computer Engineering

University of Arizona
chandanp@ece.arizona.edu

Abstract. Given two different drawings of a planar graph we consider
the problem of morphing one drawing into the other. We designed and
implemented an algorithm for intersection-free morphing of planar graphs.
Our algorithm uses a combination of different techniques to achieve
smooth transformations: rigid morphing, compatible triangulations, as
well as morphing based on interpolation of the convex representations of
the graphs. Our algorithm can morph between drawings with straight-
line segments, bends, and curves. Our system is implemented in Java
and available as an applet at http://gmorph.cs.arizona.edu.

1 Introduction

Morphing refers to the process of transforming one shape (the source) into an-
other (the target). Morphing is widely used in computer graphics, animation,
and modeling; see a survey by Gomes et al [12]. In planar graph morphing we
would like to transform a given source graph to another pre-specified target
graph. A smooth transformation of one graph into another can be useful for
numerous problems from graph drawing [4, 17]. In particular, when dealing with
dynamic graphs and graphs that change through time, it is crucial to preserve
the mental map of the user. Thus, it is important to minimize the changes to
the drawing and to create a smooth transition between consecutive drawings.

In this paper we consider the problem of morphing between two drawings,
Ds and Dt, of the same planar graph G = (V, E). We assume that both drawings
realize the same embedding of G, have the same outer-face, and are intersection-
free. The source drawing Ds and the target drawing Dt can be straight-line draw-
ings, or drawings with bends and curves. The positions of the vertices in the two
drawings may be different (as long as the embedding is the same in both). The
main objective is to find a morph that preserves planarity throughout the trans-
formation. Secondary objectives include obtaining simple and smooth trajecto-
ries for the vertices (and bends) and preserving drawing invariants throughout

? This work is partially supported by the NSF under grant ACR-0222920.

b

a

c
f

d

b

a

c
f

d

f

d

c

ba
b

a

c
fd

(a) (b) (c) (d)

e e
e

e

Fig. 1. The drawing from part (a) cannot be morphed into the drawing of part (b) while
preserving the edge lengths. In particular, edges (e, f), (b, d), (c, e) will have to shorten and
lengthen if we are to preserve planarity. The drawing from part (c) cannot be morphed into
the drawing of part (d) using linear trajectories while avoiding crossings.

the transformation. Preservation of drawing invariants refers to the the conti-
nuity of the change: for example, a particular edge may shorten throughout the
process but it should not shorten and then lengthen repeatedly. Similarly, the
morph should avoid shrinking and growing of the graph faces.

We designed and implemented an algorithm for morphing planar graphs
which preserves planarity throughout the transformation. It is easy to see that if
we want to preserve planarity, some edges may have to lengthen and shorten; see
Fig. 1(a-b). Similarly, linear trajectories cannot always be achieved; see Fig. 1(c-
d). Thus, our algorithm yields smooth trajectories and preserves edge lengths
whenever possible.

2 Previous Work

Morphing has been extensively studied in graphics, animation, modeling and
computational geometry, e.g., morphing 2D images [2, 13, 24], polygons and poly-
lines [11, 19–21], 3D objects [14, 16] and free form curves [18].

Graph morphing, refers to the process of transforming a given graph G1

into another graph G2. Early work on this problem includes a result by Cairns
in 1944 [3] who shows that if G1 and G2 are maximally planar graphs with
the same embedding, then there exists a non-intersecting morph between them.
Later, Thomassen [25] showed that if G1 and G2 are isomorphic convex planar
graphs with the same outer face, then there exists a non-intersecting morph
between them that preserves convexity.

A naive approach to morphing one graph to another is linear morphing, where
all the vertices move in a straight line at constant velocity from their positions
in the source drawing to their final positions in the target drawing [7, 15]. This
is the simplest form of morphing but it may result in poor animation as all the
trajectories may intersect at a common point, thus shrinking the drawing to a
point on the way from the source to the target; see Fig. 2. Another problem
with linear morphing is that intermediate graphs may have self-intersections
even thought the source and the target are non-crossing; see Fig. 3.

2

Fig. 2. Linear morphing can result in degenerate intermediate drawings.

Fig. 3. Linear morphing can create crossings.

Friedrich and Eades [9] present a graph animation technique based on rigid
motion and linear interpolation. In the rigid motion stage the trajectories of the
vertices are computed by an affine linear transformation. As a result, the source
and target vertices are aligned as close as possible. In the linear interpolation
stage the vertices travel on straight-line trajectories. While the rigid motion leads
to smooth animations, in the interpolation stage, crossings may occur, even if
the source and target are intersection-free. Friedrich and Houle [10] modify the
algorithm in [9] by clustering groups of nodes that share similar motions in order
to create better animations.

Graph morphing is also related to the problem of compatible triangulations.
This problem arises when it is necessary to find isomorphic triangulations of two
point sets on n vertices, or of two n-sided polygons. Aronov et al [1] show that it
is always possible to create isomorphic triangulations, provided that O(n2) ad-
ditional points (Steiner points) are created. Given two compatible triangulations
with the same convex boundaries, Floater and Gotsman [6] and Surazhsky and
Gotsman [23] show how to morph between them using convex representation
of triangulations using barycentric coordinates, originally described by Tutte in
1963 [26]. A generalization of the same approach is used in [13] for morphing
simple planar polygons, while guaranteeing that the intermediate polygons are
also simple.

3 Algorithm Overview

We assume that the source drawing Ds and the target drawing Dt are intersection-
free, have the same outer-face, and their underlying graphs are isomorphic. If the
two drawings are isomorphic but the outer-face is different then there does not

3

Main Algorithm

1. compute trajectories based on rigid motion
2. introduce “bend” vertices
3. compatibly triangulate all faces
4. compute trajectories based on convex representations

Fig. 4. Summary of the algorithm.

exists a transformation that preserves planarity throughout the process. If the
graphs are not isomorphic, then nodes and edges that are not in the intersection
of the two graphs can be faded in and out as in earlier systems [8, 9].

Our algorithm for intersection-free morphing of planar graphs has four dis-
tinct stages. In the first stage the two drawings are aligned using 2-D trans-
formations consisting of translation, rotation, scaling and shearing. That is, we
move the source drawing as close as possible to the destination drawing as a rigid
object in space. In the second stage we introduce “bend” vertices on all edges
with bends. In the case of a curvilinear drawings, we approximate the curves by
piecewise linear curves. For every edge in the graph, we ensure that the same
number of bend vertices are introduced in both Ds and Dt. In the third stage
we identify all faces and compatibly triangulate all corresponding pairs of faces.
In this process, we introduce additional triangulation vertices (Steiner points),
internal to the faces. There are at most O(k2) Steiner points, where k is equal to
the number of vertices together with the number of bends. In the fourth stage
we compute trajectories for all vertices (including the bend vertices) based on
convex graph representations and using interpolation of the matrices that rep-
resent the two graphs. The four steps of the algorithm are summarized in Fig. 4
and illustrated through an example in Fig. 5.

In the following sections we discuss steps 1, 3 and 4 in detail, leaving out
step 2 as it is quite straight-forward.

4 Computing Trajectories Using Rigid Motion

4.1 Affine Matrix of Transformations

The rigid motion in 2-D can be associated with a natural interpolation of four
transformations over time: translation, rotation, scaling and shearing. All these
transformations can be accommodated by an affine matrix, which can be con-
sidered a 2 × 2 matrix, appended with a translation row:

c11 c12 0
c21 c22 0
tx ty 1

Then a point (x, y) which can be represented with the vector [x y 1] and
multiplied on the right by the matrix, is transformed into (x′, y′) using the

4

u v

wx

v

wx

u u v

wx

2 3

1

u v

x w

u

x w

v u

x w

v

1
2

3

a

bdc

a

bdc

a

bdc

a

bdc

b

a

c

d

b

a

c

d

b

a

c

d

b

a

c

d

(a) (d)(c)(b)

Fig. 5. Part (a) shows the graphs to be morphed: the source is on the top and target is on
the bottom. Part (b) shows the addition of the bend vertices u, v, w, x (shown as squares).
Part (c) shows the independent triangulation of both graphs (dashed edges). Part (d) shows
the compatible triangulation with three Steiner points 1, 2, 3 (shown as diamonds).

linear equations:
x′ = c11x + c21y + tx
y′ = c12x + c22y + ty

Given a point ps = (xs, ys) in Ds and the corresponding target point pt =
(xt, yt) in Dt, we want p′s, the resulting point after the transformations being
applied on ps, to be as close as possible to the target point pt. Thus, to align
the two drawings as best as possible we minimize the sum of squares of such
pairwise distances:

∑

ps∈Ds

dist2(p′s, pt)

where dist is the Euclidean distance between two points. Minimizing this
sum can be realized by setting the derivative with respect to cij , tx, ty to zero
and solving the resulting equations which can be done in linear time.

4.2 Linear Interpolation of the Affine Matrix

Once we find the affine matrix of transformations, M , it is straight-forward
to perform a linear interpolation in order to obtain the sequence of matrices
throughout the morph in the rigid motion stage: (1 − t) × I + t × M , where I
is the identity matrix, gives us a natural interpolation throughout time. Once
again, the linear interpolation can lead to degeneracies, such as the collapse of
the drawing to a single point [22]. Consider, for example, a square as Ds and
the same square rotated 180◦ around the center as Dt. If we perform the linear

5

Fig. 6. Ds, at the top-left corner is aligned to Dt, at the bottom-right corner using rigid
motion. The transformations include translation, rotation, scaling and shearing. Both Ds

and Dt are opaquely drawn in all images.

interpolation from the identity matrix to the rotation matrix the square collapses
into a point in the center. Fortunately, rotation is the only rigid transformation
that is distorted by matrix interpolation and we can extract the rotation from
a given affine matrix of transformations in constant time [22]. Once rotation
is extracted from the affine matrix M , the linear interpolation of M does not
introduce degeneracies, and the rotation can be applied separately by a linear
interpolation of the rotation angle.

When aligning the two drawings using rigid motion we only use the vertices
in Ds and Dt. Fig. 6 shows the snapshots when rigid motion is applied to Ds

(an orthogonal drawing) to align it with Dt (a straight-line drawing). It is also
possible to first introduce all bend vertices and then align Ds and Dt, using all
vertices (including the bend vertices). This will correspond to swapping steps 1
and 2 of our algorithm; see Fig. 4. The main reason for aligning the drawings
based only on the original graph vertices is that the placement of the bend
vertices can be quite arbitrary, as long as the bends are added in the right order
along the original graph edges.

5 Compatible Triangulation of the Faces

After introducing all the bend vertices in both Ds and Dt we proceed to the
third stage of the algorithm and compatibly triangulate all matching pairs of
faces in Ds and Dt. Once we have the embedding of the drawing Ds, i.e., the

6

(a) (b)

Fig. 7. Part (a) shows Ds and Dt and part (b) shows the compatible triangulation.

clockwise order of the edges around each vertex in Ds, it is easy to identify the
faces. We make each edge bi-directed and traverse through the directed edges
each time following a neighboring edge in the clockwise order. This traversal
continues until all the edges are traversed in which case we have all the faces
identified. A face in Ds and Dt is a simple polygon if the graph is biconnected,
or possibly a polygonal subdivision. We first consider the simple polygon case
and then the polygonal subdivision case.

Given two corresponding polygons P1 and P2, the goal then is to compati-
bly triangulate the two polygons, i.e. triangulate them in such a way that the
resulting triangulations are isomorphic. In general, it is not always possible to
compatibly triangulate two simple polygons. However, if we allow the introduc-
tion of extra vertices (Steiner points) then we can always find a compatible tri-
angulation, using O(k2) Steiner points, where k is the number of vertices in each
polygon. We use the algorithm of [1] to construct compatible triangulations.
First we independently triangulate P1 and P2 in O(k) time. Then we overlay the
two triangulations on a newly created convex polygon P with k vertices. This
overlay introduces intersection points between the triangulation edges of P1 and
those of P2. These intersections are the Steiner points and it is easy to see that
there are at most O(k2) of them, since every triangulation edge of P1 can cross
at most O(k) triangulation edges of P2. The overlay of the two triangulations
can create faces with more than 3 edges. Fortunately, all these faces are convex
and can be easily triangulated by selecting a vertex and adding all the needed
chordal edges. The resulting full triangulation is a compatible triangulation of
both P1 and P2. Fig. 7 shows the compatible triangulations of the Ds (orthogonal
edges) and Dt (straight-line edges).

If the graph underlying Ds and Dt is biconnected, then the above approach
for compatible triangulation of polygons can be applied to all matching pairs of
faces. If the underlying graph is not biconnected, additional complications arise.

7

1

1

1

a

a

b

b

a

a

b

b b a

a

b

b

a

d

c

d c

d

c

d c

d c

d

c

d c

(a) (b) (c) (d)

e

e e

e

e

e

e

ab

Fig. 8. Dealing with non-simple polygons; (a) two non-simple faces, P1 (top) and P2

(bottom); (b) independent triangulation of P1 and P2; (c) overlay of triangulations on P .
Note that triangulation edge (a, c) from P1 is replaced with (ab, c) in the overlay; (d) the
compatible triangulation of P1 and P2.

In this case the polygonal subdivision P , constructed from a particular face in
the graph, may not be simple, as some vertex may be repeated; see Fig 8. This
problem can be overcome as follows. The triangulations of P1 and P2 are obtained
independently as before. However, we might need to add extra vertices to P ,
corresponding to each repeated vertex, before overlaying the triangulations on
P . Special care must be taken while overlaying the triangulation edges connected
to such vertices. Let a be such a vertex, as in Fig 8. Each repetition must be the
result of an edge (a, b) that is traversed in both directions while constructing
the face. Denote each such repeated vertex with the corresponding edge, i.e. ab.
Let (a, c) be a triangulation edge in P1 (or P2) that follows (a, b) in the counter
clockwise order. The triangulation edge (a, c) in the top drawing of Fig. 8(b)
is such an edge. While overlaying the triangulations in P we create an edge
between vertices c and ab, rather than c and a, see Fig. 8(c). We then overlay
the resulting triangulation on P1 and P2 as before.

6 Computing Trajectories Using Convex Representations

In 1963 Tutte proposed the following barycentric mapping to generate straight
line drawing of a 3-connected planar graph G: Given an embedding of G, we
map the outer face of G onto a convex polygon. Then the locations of interior
vertices are determined by their barycentric coordinates:

ui =
∑

j∈N(i)

λij × uj ,
∑

j∈N(i)

λij = 1,

8

Fig. 9. Convex representation morph. Dt is opaquely drawn in all images.

where λij is called a barycentric coordinate of ui with respect to uj and N(i) is
the set of neighbors of ui. In Tutte’s mapping ,λij = 1/di, where di is the degree
of ui.

Floater and Gotsman [6] applied the idea to morphing compatible triangula-
tions. The basic idea is to obtain a barycentric representation of source/target
triangulations as n × n matrices (λij is the entry at row i and column j), call
them Ms and Mt respectively, and apply a linear interpolation from Ms to Mt,
(1 − t) × Ms + t × Mt. Since throughout the interpolation each resulting ma-
trix is a barycentric representation the sequence of graphs obtained from these
matrices are all planar and the morphing is intersection-free [6].

In order to find proper λij values that depend continuously and smoothly on
the neighbors of ui we use the mean value coordinates described in [5]:

λij =
wij

∑

j∈N(i) wij

, wij =
tan(αij−1/2) + tan(αij/2)

dist(vi, vj)
,

where αij is the angle between the segments vjvi and vivj+1. Fig. 9 shows the
morph to Dt after computing the trajectory using convex representation.

Note that this approach assumes Ds and Dt share the same outer face, i.e.
the outer face vertices are located at exactly the same locations. In our general

9

Fig. 10. A snapshot of the morphing system interface.

setting for planar graphs this usually will not be the case. To handle this problem
we embed Ds and Dt inside the same triangle T . It remains to connect an outer
face vertex with a vertex of T in Ds and Dt. A simple way to do this is to pick
a vertex vs in Ds that is visible from one of the triangle vertices, ti. Connect vs

and ti with a straight-line segment. Find a vertex vt in Dt that is visible from
ti. Create a path from vs to vt in Dt following the outer face edges and connect
the path to ti.

7 System Implementation

We have implemented our morphing algorithm using Java; see Fig. 10 for a
snapshot of the system. An applet for this implementation and graph morphing
movies can be found at, http://gmorph.cs.arizona.edu. Fig. 11 shows the
complete morphing sequence of two different drawings of the same graph.

References

1. B. Aronov, R. Seidel, and D. Souvaine. On compatible triangulations of simple
polygons. CGTA: Computational Geometry: Theory and Applications, 3:27–35,
1993.

2. T. Beier and S. Neely. Feature-based image metamorphosis. volume 26, pages
35–42, July 1992.

3. S. S. Cairns. Deformations of plane rectilinear complexes. American Math.
Monthly, 51:247–252, 1944.

10

4. G. Di Battista, P. Eades, R. Tamassia, and I. G. Tollis. Graph Drawing: Algorithms
for the Visualization of Graphs. Prentice Hall, Englewood Cliffs, NJ, 1999.

5. M. Floater. Mean value coordinates. Comp. Aided Geom. Design, 20:19–27, 2003.
6. M. Floater and C. Gotsman. How to morph tilings injectively. Journal of Compu-

tational and Applied Mathematics, 101:117–129, 1999.
7. C. Friedrich. The ffgraph library. Technical Report 9520, Universität Passau, 1995.
8. C. Friedrich and P. Eades. The Marey graph animation tool demo. In Proceedings

of the 8th Symposium on Graph Drawing (GD), pages 396–406, 2000.
9. C. Friedrich and P. Eades. Graph drawing in motion. Journal of Graph Algorithms

and Applications, 6(3):353–370, 2002.
10. C. Friedrich and M. E. Houle. Graph drawing in motion II. In Proceedings of the

9th Symposium on Graph Drawing (GD), pages 220–231, 2001.
11. E. Goldstein and C. Gotsman. Polygon morphing using a multiresolution repre-

sentation. In Graphics Interface ’95, pages 247–254, 1995.
12. J. Gomes, L. Darsa, B. Costa, and D. M. Vello. Warping and Morphing of Graphical

Objects. Morgan Kaufmann, 1999.
13. C. Gotsman and V. Surazhsky. Guaranteed intersection-free polygon morphing.

Computers and Graphics, 25(1):67–75, Feb. 2001.
14. T. He, S. Wang, and A. Kaufman. Wavelet-based volume morphing. In Proceedings

of the Conference on Visualization, pages 85–92, 1994.
15. M. L. Huang and P. Eades. A fully animated interactive system for clustering and

navigating huge graphs. In Proceedings of the 6th Symposium on Graph Drawing
(GD), pages 374–383, 1998.

16. J. F. Hughes. Scheduled Fourier volume morphing. Computer Graphics, 26(2):43–
46, July 1992.

17. M. Kaufmann and D. Wagner. Drawing graphs: methods and models, volume 2025
of Lecture Notes in Computer Science. Springer-Verlag, 2001.

18. T. Samoilov and G. Elber. Self-intersection elimination in metamorphosis of two-
dimensional curves. The Visual Computer, 14:415–428, 1998.

19. T. W. Sederberg, P. Gao, G. Wang, and H. Mu. 2D shape blending: An intrinsic
solution to the vertex path problem. In Computer Graphics (SIGGRAPH ’93
Proceedings), volume 27, pages 15–18, 1993.

20. T. W. Sederberg and E. Greenwood. A physically based approach to 2-D shape
blending. volume 26, pages 25–34, July 1992.

21. M. Shapira and A. Rappoport. Shape blending using the star-skeleton representa-
tion. IEEE Computer Graphics and Applications, 15(2):44–50, Mar. 1995.

22. K. Shoemake and T. Duff. Matrix animation and polar decomposition. In Pro-
ceedings of Graphics Interface ’92, pages 258–264, May 1992.

23. V. Surazhsky and C. Gotsman. Controllable morphing of compatible planar tri-
angulations. ACM Transactions on Graphics, 20(4):203–231, Oct. 2001.

24. A. Tal and G. Elber. Image morphing with feature preserving texture. Computer
Graphics Forum, 18(3):339–348, Sept. 1999. ISSN 1067-7055.

25. C. Thomassen. Deformations of plane graphs. J. Combin. Theory Ser. B, 34:244–
257, 1983.

26. W. T. Tutte. How to draw a graph. Proc. London Math. Society, 13(52):743–768,
1963.

11

Fig. 11. A complete morph from Ds at the to-left corner, to Dt at the bottom-right.

12

